
Package ‘analyze.stuff’
December 27, 2019

Title Miscellaneous Tools for Analyzing Data in Rows and Columns

Version 1.0.0

Date 2020-01-01

Description Tools that simplify some basic tasks in exploring and analyzing a
dataset in a matrix or data.frame. Key functions help to change many fieldnames
to new names using a map of old to new names, create many calculated fields
based on formulas specified or saved as text fields (character vector),
see how many rows or cols have values above certain cutoffs, get rowMaxs,
colMaxs, wtd.rowMeans, wtd.colMeans, see a table of values at 100 weighted
percentiles, see how many values are NA or non-NA in each column, etc.

Imports Hmisc,
matrixStats,
data.table

Suggests sp

URL https://github.com/ejanalysis/analyze.stuff

BugReports https://github.com/ejanalysis/analyze.stuff/issues

Depends R (>= 3.1.0)

RoxygenNote 7.0.2

License MIT + file LICENSE

Repository GitHub

Author info@ejanalysis.com

Maintainer info@ejanalysis.com <info@ejanalysis.com>

NeedsCompilation no

LazyData true

Encoding UTF-8

R topics documented:
analyze.stuff . 3
calc.fields . 4
change.fieldnames . 5
colMaxs . 6
colMins . 8
cols.above.count . 10

1

https://github.com/ejanalysis/analyze.stuff
https://github.com/ejanalysis/analyze.stuff/issues

2 R topics documented:

cols.above.pct . 11
cols.above.which . 12
count.above . 13
count.below . 16
count.words . 17
dir2 . 18
dirdirs . 19
dirr . 20
download.files . 20
expand.gridMatrix . 21
factor.as.numeric . 22
findArgs . 23
formatcomma . 24
geomean . 24
get.os . 25
harmean . 25
installrequired . 26
intersperse . 27
lead.zeroes . 28
length2 . 28
linefit . 29
linesofcode . 30
logposneg . 31
mem . 31
minNonzero . 32
na.check . 33
na.check2 . 34
names2 . 34
normalized . 35
os . 36
overlaps . 36
pause . 37
pct.above . 38
pct.below . 41
pctiles . 42
pctiles.a.over.b . 43
pctiles.exact . 44
pdf2 . 45
put.first . 46
rmall . 46
rms . 47
rowMaxs . 47
rowMins . 49
rows.above.count . 51
rows.above.pct . 52
rows.above.which . 53
rows.below.count . 54
rows.below.pct . 55
setdiff2 . 57
signifarray . 57
similar . 58
similar.p . 59

analyze.stuff 3

tabular . 60
tb . 60
unzip.files . 61
wtd.colMeans . 61
wtd.colMeans2 . 63
wtd.pctiles . 64
wtd.pctiles.exact . 65
wtd.pctiles.fast . 66
wtd.rowMeans . 67
wtd.rowSums . 68

Index 69

analyze.stuff Basic Tools for Analyzing Datasets

Description

This R package provides some useful tools for analyzing data in matrices and data.frames, such
as functions to find the weighted mean of each column of data, add leading zeroes, or find what
percent of rows are above some cutoff for each column.

Details

Key functions include

• change.fieldnames: Change many fieldnames using map of current to new ones

• calc.fields: Create many new calculated fields from data.frame fields by specifying a list
of formulas

• similar.p, setdiff2: Compare two datasets or sets

• rows.above.count, rows.above.pct: How many rows have values above a cutoff

• cols.above.count, cols.above.pct: How many cols have values above a cutoff

• rowMaxs, colMaxs, rowMins, colMins: Max or min of each row or col in data.frame or matrix

• wtd.rowMeans, wtd.colMeans: Weighted mean of each row or col

• pctiles, wtd.pctiles: See a table of values at 100 percentiles, for each field.

• na.check, length2: How many NA or non-NA values in each column

• mem: What objects are taking up the most memory

• dir2, dirr, dirdirs: Directory listing with wildcards, just R-related files, subfolders, etc.

May add later:

• cols.below.count

• cols.below.pct

• cols.below.which

• rows.above.count

• rows.above.pct

4 calc.fields

• rows.above.which

• rows.below.count

• rows.below.pct

• rows.below.which

Author(s)

info@ejanalysis.com <info@ejanalysis.com>

References

http://ejanalysis.github.io
http://www.ejanalysis.com

**Acknowledgements:
The package sp function spDists. The matrixStats package provides versions of rowMins, row-
Max, colMins, colMaxs and related functions. This package could at some point provide data.frame
methods that extend those, but for now it replaces them with slower versions that work on data.frames.
Source: Henrik Bengtsson (2015). matrixStats: Methods that Apply to Rows and Columns of a Ma-
trix. R package version 0.13.1-9000. https://github.com/HenrikBengtsson/matrixStats

calc.fields Create calculated fields by specifying formulas

Description

Create calculated fields from formulas that are specified as character strings, returning data.frame
of specified results (not all intermediate variables necessarily) e.g., create calculated demographic
variables from raw American Community Survey counts. This function is useful if you are working
with a dataset with numerous fields, and you want to calculate numerous derived fields from those
original fields, and you find it convenient to store all of the formulas in a text file, for example. You
could read in the formulas from the file, and apply them to a new version of the dataset to calculate
a new version of all of your derived fields.

Usage

calc.fields(mydf, formulas, keep)

Arguments

mydf Required. A data.frame with strings that are field names (input variables) that
may appear in formulas. See example.

formulas Required. A vector of strings that are formulas based on input variables and/or
variables calculated from previous formulas. See example.

keep Optional. A vector of strings that are the input and/or calculated variables to
return, in case not all intermediate variables are needed. Default is all results of
formulas but not any input variables.

http://ejanalysis.github.io
http://www.ejanalysis.com
https://github.com/HenrikBengtsson/matrixStats

change.fieldnames 5

Details

This function returns a matrix or vector of results of applying specified formulas to the fields in the
input data.frame. Each row of data is used in a formula to provide a row of results.

Value

A data.frame of new variables where columns are defined by keep (or all calculated variables if
keep is not specified).

See Also

change.fieldnames

Examples

formulas could be ejscreenformulas$formula from the ejscreen package, for example.
myforms <- c('calcvar1 = b+1', 'calcvar2=calcvar1 + a', 'calcvar3<- paste(a,"x",sep="")')
Saving to and reading from a file that stores all these formulas:
write.csv(myforms, file='testforms.csv', row.names = FALSE)
myforms <- read.csv('testforms.csv')
mydat <- data.frame(a=1:10, b=2:11)
x <- calc.fields(mydat, myforms); x
Return only some of the input/output variables:
calc.fields(mydf=mydat, formulas=myforms, keep=c('a', 'calcvar2','calcvar3'))

change.fieldnames Change some or all of the colnames of a data.frame or matrix via a
1-1 map

Description

Returns a new set of field names, based on the old set of names, which can be specified in a file or
as parameters. This provides a convenient way to specify which names will be replaced with which
new names, via a map of 1-1 relationships between the old names and new names.

Usage

change.fieldnames(allnames, oldnames, newnames, file = NA, sort = FALSE)

Arguments

allnames Character vector, optional. A vector of all the original fieldnames, such as the
results of names(mydataframe).

oldnames Character vector, optional. A vector of only those original fieldnames that you
want to change, in any order.

newnames Character vector, optional. A vector of new names, sorted in an order corre-
sponding to oldnames.

file Character, optional. A filename (or path with filename) for a mapping file that
is a csv file with two columns named with a header row: oldnames, newnames
(instead of passing them to the function as parameters).

sort Logical value, optional, FALSE by default. If FALSE, return new fieldnames.
If sort=TRUE, return vector of indexes giving new position of given field, based
on sort order of oldnames.

6 colMaxs

Details

This function returns a character vector of length equal to the number of oldnames (the parameter
or the field in the file).

Value

A vector of character strings, the full set of fieldnames, with some or all updated if sort=FALSE
(default). Uses oldnames and newnames, or file for mapping. If those are not specified, it tries to
open an interactive window for editing a mapping table to create and save it as a csv file.

If sort=TRUE, return vector of indexes giving new position of given field, based on sort order
of oldnames. If sort=TRUE, names in oldnames that are not in allnames are ignored with warning,
& names in allnames that are left out of oldnames left out of new sort order indexes.

See Also

put.first which make it easier to rearrange the order of columns in a data.frame.

Examples

oldnames <- c('PCTILE', 'REGION')
newnames <- c('percentile', 'usregion')
df <- data.frame(REGION=301:310, ID=1:10, PCTILE=101:110, OTHER=1:10)
names(df) <- change.fieldnames(names(df), oldnames, newnames); names(df)
names(df) <- change.fieldnames(names(df), "ID", "identification"); names(df)
names(df) <- change.fieldnames(names(df)); names(df) # does not work on MacOSX?
names(df) <- change.fieldnames(names(df), 'saved fieldnames.csv'); names(df)
df[change.fieldnames(names(df), c('ID', 'OTHER', 'REGION', 'PCTILE'), sort=TRUE)]
much like df[, c('ID', 'OTHER', 'REGION', 'PCTILE')]
change.fieldnames is more useful when file specified

colMaxs Get the max value of each column of a data.frame or matrix

Description

Returns maximum value of each column of a data.frame or matrix.

Usage

colMaxs(df, na.rm = TRUE)

Arguments

df data.frame or matrix

na.rm TRUE by default. Should NA values be removed first

colMaxs 7

Details

** NOTE: The useful matrixStats package will provide the basis for extended rowMins, rowMax,
colMins, colMaxs functions to be made available through this package. Source: Henrik Bengtsson
(2015). matrixStats: Methods that Apply to Rows and Columns of a Matrix. R package version
0.13.1-9000.
https://github.com/HenrikBengtsson/matrixStats
Initially, separate functions were written here for those four functions, and the versions here were
more flexible and convenient for some purposes, e.g., handling data.frames and different na.rm de-
faults, but the matrixStats versions are much faster (e.g., by 4x or more). Ideally, this analyze.stuff
package would be modified to just extend those functions by providing them methods to handle
data.frames, not just matrix class objects, and perhaps provide new or different parameters or de-
faults, such as defaulting to na.rm=TRUE instead of FALSE, and handling factor class columns in
a data.frame. That has not been done yet, so colMaxs() etc. refer to the slower more flexible ones,
and the faster matrix-only ones are via matrixStats::colMaxs etc.

** NOTE: max() and min() and matrixStats::colMaxs from matrixStats etc. default to na.rm=FALSE,
but this function defaults to na.rm=TRUE because that just seems more frequently useful.

** NOTE: min and max & this function will handle character elements by coercing all others in
the column to character, which can be confusing – e.g., note that min(c(8,10,’txt’)) returns ’10’ not
’8’ and max returns ’txt’ (also see the help for Comparison)

If this worked just like max() and min(), cols that are factors would make this fail. max or min
of a factor fails, even if as.character() of the factor would return a valid numeric vector. That isn’t
an issue with a matrix, but a data.frame might have numbers stored as factor. To fix that, this uses
factor.as.numeric with parameters that try to convert character or factor columns to numeric.

Based on how min and max behave, return Inf or -Inf if no non-missing arguments to min or max
respectively. To suppress that warning when using this function, use suppressWarnings(func(x))

Value

vector of numbers with length equal to number of cols in df

See Also

factor.as.numeric rowMaxs rowMins colMaxs colMins count.above pct.above pct.below
cols.above.which cols.above.pct

Other functions for max and min of rows and columns: colMins(), rowMaxs(), rowMins()

Examples

blah <- rbind(NA, data.frame(a=c(0, 0:8), b=c(0.1+(0:9)), c=c(1:10), d=c(rep(NA, 10)),
e=TRUE, f=factor('factor'), g='words', stringsAsFactors=FALSE))

cbind(blah, min=rowMins(blah), max=rowMaxs(blah))
rbind(blah, min=colMins(blah), max=colMaxs(blah))
blah <- blah[, sapply(blah, function(x) is.numeric(x) | is.logical(x))]
cbind(blah, min=rowMins(blah), max=rowMaxs(blah),

mean=rowMeans(blah, na.rm=TRUE), sum=rowSums(blah, na.rm=TRUE))
rbind(blah, min=colMins(blah), max=colMaxs(blah),

mean=colMeans(blah, na.rm=TRUE), sum=colSums(blah, na.rm=TRUE))

https://github.com/HenrikBengtsson/matrixStats

8 colMins

** Actually, matrixStats does this ~4x as quickly,
although no practical difference unless large dataset:
n <- 1e7

t1=Sys.time(); x=analyze.stuff::colMaxs(cbind(a=1:n, b=2, c=3, d=4, e=5)); t2=Sys.time()
print(difftime(t2,t1))
t1=Sys.time(); x= matrixStats::colMaxs(cbind(a=1:n, b=2, c=3, d=4, e=5)); t2=Sys.time()
print(difftime(t2,t1))
Note the latter cannot handle a data.frame:
Not run:
This would fail:
matrixStats::colMaxs(data.frame(a=1:10, b=2))
This works:
analyze.stuff::colMaxs(data.frame(a=1:10, b=2))

End(Not run)

colMins Returns the min value of each column of a data.frame or matrix

Description

Returns minimum value of each column of a data.frame or matrix.

Usage

colMins(df, na.rm = TRUE)

Arguments

df data.frame or matrix

na.rm TRUE by default. Should NA values be removed first

Details

** NOTE: The useful matrixStats package will provide the basis for extended rowMins, rowMax,
colMins, colMaxs functions to be made available through this package. Source: Henrik Bengtsson
(2015). matrixStats: Methods that Apply to Rows and Columns of a Matrix. R package version
0.13.1-9000.
https://github.com/HenrikBengtsson/matrixStats
Initially, separate functions were written here for those four functions, and the versions here were
more flexible and convenient for some purposes, e.g., handling data.frames and different na.rm de-
faults, but the matrixStats versions are much faster (e.g., by 4x or more). Ideally, this analyze.stuff
package would be modified to just extend those functions by providing them methods to handle
data.frames, not just matrix class objects, and perhaps provide new or different parameters or de-
faults, such as defaulting to na.rm=TRUE instead of FALSE, and handling factor class columns in
a data.frame. That has not been done yet, so colMaxs() etc. refer to the slower more flexible ones,
and the faster matrix-only ones are via matrixStats::colMaxs etc.

** NOTE: max() and min() and matrixStats::colMaxs from matrixStats etc. default to na.rm=FALSE,
but this function defaults to na.rm=TRUE because that just seems more frequently useful.

https://github.com/HenrikBengtsson/matrixStats

colMins 9

** NOTE: min and max & this function will handle character elements by coercing all others in
the column to character, which can be confusing – e.g., note that min(c(8,10,’txt’)) returns ’10’ not
’8’ and max returns ’txt’ (also see the help for Comparison)

If this worked just like max() and min(), cols that are factors would make this fail. max or min
of a factor fails, even if as.character() of the factor would return a valid numeric vector. That isn’t
an issue with a matrix, but a data.frame might have numbers stored as factor. To fix that, this uses
factor.as.numeric with parameters that try to convert character or factor columns to numeric.

Based on how min and max behave, return Inf or -Inf if no non-missing arguments to min or max
respectively. To suppress that warning when using this function, use suppressWarnings(func(x))

Value

vector of numbers with length equal to number of cols in df

See Also

factor.as.numeric rowMaxs rowMins colMaxs colMins count.above pct.above pct.below
cols.above.which cols.above.pct

Other functions for max and min of rows and columns: colMaxs(), rowMaxs(), rowMins()

Examples

blah <- rbind(NA, data.frame(a=c(0, 0:8), b=c(0.1+(0:9)), c=c(1:10), d=c(rep(NA, 10)),
e=TRUE, f=factor('factor'), g='words', stringsAsFactors=FALSE))

cbind(blah, min=rowMins(blah), max=rowMaxs(blah))
rbind(blah, min=colMins(blah), max=colMaxs(blah))
blah <- blah[, sapply(blah, function(x) is.numeric(x) | is.logical(x))]
cbind(blah, min=rowMins(blah), max=rowMaxs(blah),

mean=rowMeans(blah, na.rm=TRUE), sum=rowSums(blah, na.rm=TRUE))
rbind(blah, min=colMins(blah), max=colMaxs(blah),

mean=colMeans(blah, na.rm=TRUE), sum=colSums(blah, na.rm=TRUE))
** Actually, matrixStats does this ~4x as quickly,
although no practical difference unless large dataset:
n <- 1e7

t1=Sys.time(); x=analyze.stuff::colMaxs(cbind(a=1:n, b=2, c=3, d=4, e=5)); t2=Sys.time()
print(difftime(t2,t1))
t1=Sys.time(); x= matrixStats::colMaxs(cbind(a=1:n, b=2, c=3, d=4, e=5)); t2=Sys.time()
print(difftime(t2,t1))
Note the latter cannot handle a data.frame:
Not run:
This would fail:
matrixStats::colMaxs(data.frame(a=1:10, b=2))
This works:
analyze.stuff::colMaxs(data.frame(a=1:10, b=2))

End(Not run)

10 cols.above.count

cols.above.count Number of Columns with Value at or above Cutoff

Description

Find what number of columns have a value at or above some cutoff.

Usage

cols.above.count(x, cutoff, or.tied = FALSE, na.rm = TRUE, below = FALSE)

Arguments

x Data.frame or matrix of numbers to be compared to cutoff value.

cutoff The numeric threshold or cutoff to which numbers are compared. Default is
arithmetic mean of row. Usually one number, but can be a vector of same length
as number of rows, in which case each row can use a different cutoff.

or.tied Logical. Default is FALSE, which means we check if number in x is greater
than the cutoff (>). If TRUE, check if greater than or equal (>=).

na.rm Logical value, optional, TRUE by default. Defines whether NA values should
be removed before result is found. Otherwise result will be NA when a row has
an NA value in any column.

below Logical. Default is FALSE. If TRUE, uses > or >= cutoff. If FALSE, uses < or
<= cutoff.

Details

For a matrix with a few cols of related data, find what number of columns are at/above (or below)
some cutoff. Returns a vector of number indicating how many of the columns are at/above the
cutoff. Can be used in identifying places (rows) where some indicator(s) is/are at/above a cutoff,
threshold value.

Value

Returns a vector the same size as the number of rows in x.

Note

Future work: these functions could have wts, na.rm, & allow cutoffs or benchmarks as a vector (not
just 1 number), & have benchnames.

See Also

count.above pct.above pct.below to see, for each column, the count or percent of rows that
have values above or below a cutoff.

cols.above.count cols.above.which cols.above.pct to see, for each row, the count or which
or fraction of columns with numbers at/above/below cutoff.

Other functions for above and below: cols.above.pct(), cols.above.which(), count.above(),
count.below(), pct.above(), pct.below(), rows.above.count(), rows.above.pct(), rows.above.which(),
rows.below.count(), rows.below.pct()

cols.above.pct 11

Examples

out <- cols.above.count(x<-data.frame(a=1:10, b=rep(7,10), c=7:16), cutoff=7)
out
out # default is or.tied=FALSE
out <- cols.above.count(data.frame(a=1:10, b=rep(7,10), c=7:16),

cutoff=7, or.tied=TRUE, below=TRUE)
out
out <- cols.above.count(data.frame(a=1:10, b=rep(7,10), c=7:16))
Compares each number in each row to the row's mean.

out

cols.above.pct Percent of Columns with Value at or above Cutoff

Description

Find what percent of columns have a value at or above some cutoff.

Usage

cols.above.pct(x, cutoff, or.tied = FALSE, na.rm = TRUE, below = FALSE)

Arguments

x Data.frame or matrix of numbers to be compared to cutoff value. Must have
more than one row and one column?

cutoff The numeric threshold or cutoff to which numbers are compared. Default is
arithmetic mean of row. Usually one number, but can be a vector of same length
as number of rows, in which case each row can use a different cutoff.

or.tied Logical. Default is FALSE, which means we check if number in x is greater
than the cutoff (>). If TRUE, check if greater than or equal (>=).

na.rm Logical, default TRUE. Should NA values be removed before analysis.

below Logical. Default is FALSE. If TRUE, uses > or >= cutoff. If FALSE, uses < or
<= cutoff.

Details

For a matrix with a few cols of related data, find what percent of columns are at/above (or below)
some cutoff. Returns a vector of number indicating what percentage of the columns are at/above the
cutoff. Can be used in identifying places (rows) where some indicator(s) is/are at/above a cutoff,
threshold value.

Value

Returns a vector the same size as the number of rows in x.

Note

Future work: these functions could have wts, na.rm, & allow cutoffs or benchmarks as a vector (not
just 1 number), & have benchnames.

12 cols.above.which

Author(s)

author

See Also

count.above pct.above pct.below to see, for each column, the count or percent of rows that
have values above or below a cutoff.

cols.above.count cols.above.which cols.above.pct to see, for each row, the count or which
or fraction of columns with numbers at/above/below cutoff.

Other functions for above and below: cols.above.count(), cols.above.which(), count.above(),
count.below(), pct.above(), pct.below(), rows.above.count(), rows.above.pct(), rows.above.which(),
rows.below.count(), rows.below.pct()

Examples

out <- cols.above.pct(x<-data.frame(a=1:10, b=rep(7,10), c=7:16), cutoff=7)
out
out # default is or.tied=FALSE
out <- cols.above.pct(data.frame(a=1:10, b=rep(7,10), c=7:16),

cutoff=7, or.tied=TRUE, below=TRUE)
out
out <- cols.above.pct(data.frame(a=1:10, b=rep(7,10), c=7:16))
Compares each number in each row to the row's mean.

out

cols.above.which Does each Column have a Value at or above Cutoff(s)

Description

Flag which cells are at or above some cutoff(s) or mean.

Usage

cols.above.which(x, cutoff, or.tied = FALSE, below = FALSE)

Arguments

x Data.frame or matrix of numbers to be compared to cutoff value.
cutoff The numeric threshold or cutoff to which numbers are compared. Default is

arithmetic mean of row. Usually one number, but can be a vector of same length
as number of rows, in which case each row can use a different cutoff.

or.tied Logical. Default is FALSE, which means we check if number in x is greater
than the cutoff (>). If TRUE, check if greater than or equal (>=).

below Logical. Default is FALSE. If TRUE, uses > or >= cutoff. If FALSE, uses < or
<= cutoff.

Details

For a matrix with a few cols of related data, find which cells are at or above (or below) some cutoff.
Returns a logical matrix, with TRUE for each cell that is at or above the cutoff. Can be used in
identifying places (rows) where some indicator(s) is or are at or above a cutoff, threshold value.

count.above 13

Value

Returns a logical matrix the same size as x. ** Note this is different than which – That function
returns the positions of TRUE elements but this returns TRUE or FALSE for all elements.

Note

Future work: these functions could have wts, na.rm, & allow cutoffs or benchmarks as a vector (not
just 1 number), & have benchnames.

See Also

count.above pct.above pct.below to see, for each column, the count or percent of rows that
have values above or below a cutoff.

cols.above.count cols.above.which cols.above.pct to see, for each row, the count or which
or fraction of columns with numbers at/above/below cutoff.

Other functions for above and below: cols.above.count(), cols.above.pct(), count.above(),
count.below(), pct.above(), pct.below(), rows.above.count(), rows.above.pct(), rows.above.which(),
rows.below.count(), rows.below.pct()

Examples

out <- cols.above.which(x<-data.frame(a=1:10, b=rep(7,10), c=7:16), cutoff=7)
out
out # default is or.tied=FALSE
out <- cols.above.which(data.frame(a=1:10, b=rep(7,10), c=7:16),

cutoff=7, or.tied=TRUE, below=TRUE)
out
out <- cols.above.which(data.frame(a=1:10, b=rep(7,10), c=7:16))
Compares each number in each row to the row's mean.
out

count.above Number or percent of rows (for each col) where value exceeds cutoff(s)

Description

Count the number or percent of rows (for each col of a data.frame) where the value exceeds some
specified cutoff(s)

Usage

count.above(
df,
benchmarks = "mean",
benchnames = "cutoff",
or.tied = FALSE,
below = FALSE,
wts = 1,
na.rm = TRUE

)

14 count.above

Arguments

df Data.frame or matrix, required.

benchmarks Default is ’mean’ but otherwise this must be a number or numeric vector of
thresholds to compare values to.

benchnames Default is ’cutoff’ and this string is used to create colnames for the results, such
as above.cutoff.for.field1

or.tied Logical, FALSE by default, reporting on those > cutoff. But, if or.tied=TRUE,
this reports on those >= cutoff.

below Logical, FALSE by default, which counts how many are above cutoff (or tied if
or.tied). If TRUE, counts how many are below (or tied with) cutoff.

wts Number or vector, default is 1. Length must be a factor of number of rows in df,
so length(df[,1]) is an integer multiple of length(wts) Applies weights to when
counting how many.

na.rm Logical value, optional, TRUE by default. Defines whether NA values should
be removed first. Otherwise result will be NA when any NA is in a col.

Details

• If wts is population counts, for example, this gives the COUNT of people (not rows) for whom
value in df[,x] exceeds benchmark for each column x

• If below=FALSE by default, reports on those above (or tied with, if or.tied) cutoff. But if
below=TRUE, this reports on those below (or tied with, if or.tied) cutoff.

• If df (passed to the function) is a data.frame or matrix, the function returns a vector of length=
length(df) or number of cols in matrix.

• If df is just a vector, it is treated like a 1-column data.frame, so the function returns a single
value.

• If benchmarks (passed to the function) is a data.frame matching df in dimensions, each value
is used as the cutoff for the corresponding cell in df.

• If benchmarks is a vector of length= length(df), each value in benchmarks is the cutoff for the
corresponding column in df.

• If benchmarks is a shorter vector, it is recycled. (e.g., a vector of length 2 would use the first
benchmark as the cutoff for all odd columns of df, the second for all even columns of df).

• If benchmarks is a single numeric value, it is used as the cutoff value in every comparison for
all of df.

• If benchmarks is omitted, the default behavior is to use the arithmetic mean value a column of
df as the cutoff for that column of df.

• If benchnames is omitted, the word "cutoff" is used by default (unless benchmarks is also
omitted).

• If benchnames is specified but benchmarks is not, the benchmarks default to the column
means, so benchnames is ignored and "mean" is used instead.

• If wts is omitted the default is 1 which means no weighting. Just row counts.

• If wts is a vector of length= length(df[,1]) then each row of df uses the corresponding weight
and count is sum of wts not count of rows.

• If wts is shorter than that, it is recycled but # of rows in df must be an integer multiple of
length(wts).

count.above 15

• NA values in df are not counted and are not in the numerator of pct.above() but the denomina-
tor of pct.above() is a count of all rows of df, not just the non-NA ones.

These could be renamed rows.above.count(), rows.above.pct(), rows.above.which() to follow con-
vention of cols.above.count(), cols.above.pct(), cols.above.which() and same using below too, like
rows.below.pct() etc. and *** should make param names consistent, like x not df, cutoff(s) not
benchmarks?, or.tied not gte but *** cols versions and all should have wts, na.rm, benchmarks
as vector not just 1 number, benchnames, params and ** should have a "below" version for each
variant

Value

Returns a vector of numbers of length equal to number of columns in df.

Note

Future work: these functions could have wts, na.rm, & allow cutoffs or benchmarks as a vector (not
just 1 number), & have benchnames.

See Also

count.above pct.above pct.below to see, for each column, the count or percent of rows that
have values above or below a cutoff.

cols.above.count cols.above.which cols.above.pct to see, for each row, the count or which
or fraction of columns with numbers at/above/below cutoff.

Other functions for above and below: cols.above.count(), cols.above.pct(), cols.above.which(),
count.below(), pct.above(), pct.below(), rows.above.count(), rows.above.pct(), rows.above.which(),
rows.below.count(), rows.below.pct()

Examples

x <- data.frame(a=1:20, b=10, c=c(1:9,100:110))
mywts <- c(rep(1,10), rep(2,10))
mybench <- c(3,100,10)
mynames <- c("HI","USavg","HealthStandard")

count.above(x, 0, wts=mywts)
count.above(x, 100, wts=mywts)
count.above(x, 10, wts=mywts)
count.above(x, mybench, wts=mywts)
cbind(count= count.above(x, mybench, mynames, wts=mywts))
cbind(pct= pct.above(x, benchmarks=mybench, benchnames=mynames, wts=mywts))
cbind(

count= count.above(x, mybench, mynames, wts=mywts),
pct= pct.above(x, benchmarks=mybench, benchnames=mynames, wts=mywts))

cbind(stat= pct.above(as.matrix(x), mybench, mynames, wts=mywts))
cbind(stat= pct.above(1:100, 98 , wts=mywts))
If only a single vector is passed,
not a data.frame "Warning: df is a vector... converting to data.frame"

to find how many PLACES are at/above the 95th population-weighted percentile
(won't be exactly 5% of places, just 5% of people):
mybench2 <- sapply(x, function(z) Hmisc::wtd.quantile(z, mywts, probs=0.95, na.rm=TRUE))
count.above(x, benchmarks=mybench2, benchnames=paste('pop.95th.', names(x), sep=''), wts=1)
to find how many PLACES are at/above the MEDIAN pop-wtd place

16 count.below

(won't be exactly half of places, just half of people):
mybench2 <- sapply(x, function(z) Hmisc::wtd.quantile(z, mywts, probs=0.50, na.rm=TRUE))
count.above(x, benchmarks=mybench2, benchnames=paste('pop.median.', names(x), sep=''), wts=1)

to find how many PEOPLE are at/above the 95th percentile place
(won't be exactly 5% of people, just 5% of places):
mybench2 <- sapply(x, function(z) quantile(z, probs=0.95, na.rm=TRUE))
count.above(x, benchmarks=mybench2, benchnames=paste('95th.', names(x), sep=''), wts=mywts)
#
Not run:
to find how many PEOPLE are at/above the MEDIAN place
(won't be exactly 50% of people, just 50% of places):
mybench2 <- sapply(x, function(z) quantile(z, probs=0.50, na.rm=TRUE))
count.above(x, benchmarks=mybench2, benchnames=paste('median.', names(x), sep=''), wts=mywts)
##not run## cbind(pct.above(1:100, wts=mywts))
That does not recycle weights in this situation of a single vector argument
count.above(data.frame(a=c(1:10, NA)), 2, wts=mywts) # does not work if NA values
cbind(pct.above(data.frame(a=c(1:10, NA)), 0 , wts=mywts))

Gives "Error: wts must be a vector whose length is a factor of # rows in df,
so length(df[,1]) is an integer multiple of length(wts) "

pct.above(data.frame(a=c(NA, NA, NA)), 3, wts=mywts)
Gives "Error - df is a single NA value or single column with only NA values"

count.above(x, c(3,1), wts=mywts) # 3,1 is recycled as 3,1,3 since x has 3 cols
pct.above(x, benchnames=mynames, wts=mywts)

ignores names since default benchmarks are column means

End(Not run)

count.below Number or percent of rows (for each col) where value is below cutoff(s)

Description

Count the number or percent of rows (for each col of a data.frame) where the value is below some
specified cutoff(s)

Usage

count.below(
df,
benchmarks = "mean",
benchnames = "cutoff",
na.rm = TRUE,
or.tied = FALSE,
below = TRUE,
wts = 1

)

Arguments

df Data.frame or matrix, required.

benchmarks Default is ’mean’ but otherwise this must be a number or numeric vector of
thresholds to compare values to.

count.words 17

benchnames Default is ’cutoff’ and this string is used to create colnames for the results
na.rm Logical value, optional, TRUE by default. Defines whether NA values should

be removed first. Otherwise result will be NA when any NA is in a col.
or.tied Logical, FALSE by default, reporting on those < cutoff. But, if or.tied=TRUE,

this reports on those <= cutoff.
below Logical, TRUE by default, which counts how many are below cutoff (or tied if

or.tied). If FALSE, counts how many are above (or tied with) cutoff.
wts Number or vector, default is 1. Length must be a factor of number of rows in df,

so length(df[,1]) is an integer multiple of length(wts) Applies weights to when
counting how many.

Details

See count.above for details, for which this is a wrapper.

Value

Returns a vector of numbers of length equal to number of columns in df.

Note

Future work: these functions could have wts, na.rm, & allow cutoffs or benchmarks as a vector (not
just 1 number), & have benchnames.

See Also

count.above pct.above pct.below to see, for each column, the count or percent of rows that
have values above or below a cutoff.

cols.above.count cols.above.which cols.above.pct to see, for each row, the count or which
or fraction of columns with numbers at/above/below cutoff.

Other functions for above and below: cols.above.count(), cols.above.pct(), cols.above.which(),
count.above(), pct.above(), pct.below(), rows.above.count(), rows.above.pct(), rows.above.which(),
rows.below.count(), rows.below.pct()

count.words Word Frequency in a Text File

Description

Simple way to count how many times each word appears in a text file.

Usage

count.words(
file,
wordclump = 1,
ignore.case = TRUE,
stopwords = "",
string,
numbers.keep = TRUE,
...

)

18 dir2

Arguments

file Character string filename, with or without path, for text file to be analyzed.
Words assumed to be separated by spaces.

wordclump number of words per clump, so if wordclump=2, it counts how often each 2-
word phrase appears.

ignore.case Logical, default TRUE which means not case-sensitive.

stopwords Vector of words to ignore and not count. Default is none, optional.

string A single character string containing text to analyze. Not yet implemented.

numbers.keep Not yet implemented. Would ignore numbers.

... Any other parameters used by scan may be passed through. See http://stat.
ethz.ch/R-manual/R-devel/library/base/html/scan.html

Value

Returns a data.frame with term (term) and frequencies (freq) sorted by frequency, showing the
number of times a given word appears in the file. The rownames are also the words found.

Examples

Not run:
counts <- count.words('speech.txt'); tail(counts, 15)

counts <- count.words('speech.txt', ignore.case=FALSE); head(counts[order(counts$term),], 15)
counts <- count.words('speech.txt', stopwords=c('The', 'the', 'And', 'and', 'A', 'a'))
tail(counts, 15)
counts <- count.words('speech.txt', 3); tail(counts, 30)
#
counts['the',]
counts[c('the', 'and', 'notfoundxxxxx'),] # works only if you are sure all are found
counts[rownames(counts) %in% c('the', 'and', 'notfoundxxxxx'),]

that works even if specified word wasn't found
counts[counts$term %in% c('the', 'and', 'notfoundxxxxx'),]

that works even if specified word wasn't found
counts <- count.words('C:/mypath/speech.txt')
counts <- count.words('speech.txt', sep='.')
that is for whole sentences (sort of - splits up at decimal places as well)

End(Not run)

dir2 Directory listing using wildcard search

Description

Function to let you see directory listing using wildcard search syntax like ’*.R’

Usage

dir2(x, ignore.case = TRUE, ...)

http://stat.ethz.ch/R-manual/R-devel/library/base/html/scan.html
http://stat.ethz.ch/R-manual/R-devel/library/base/html/scan.html

dirdirs 19

Arguments

x Query string that can use wildcards to search directory

ignore.case Logical, TRUE by default, optional. If FALSE, then this is case-sensitive.

... Optional other parameters passed to dir

Value

A directory listing.

See Also

dirdirs dirr

Examples

dir2('*.txt')
dir2('*.txt', path='~')
dir2() # shows only files, not folders, if no x is specified.
dir2(path='~') # shows only files, not folders, if no x is specified.

dirdirs Directory listing of R-related files/folders

Description

Function to let you see directory listing of files/folders ending in r, R, or RData

Usage

dirdirs(path = ".", recursive = FALSE, ...)

Arguments

path Path as character string, optional. Default is current working directory.

recursive Logical value, optional, FALSE by default. Should subdirectories be shown.

... Optional other parameters passed to list.dirs

Value

A directory listing

See Also

dir2 dirr

Examples

dirdirs()

20 download.files

dirr Directory listing of R-related files/folders

Description

Function to let you see directory listing of files/folders ending in r, R, or RData

Usage

dirr(path = ".", ignore.case = TRUE, ...)

Arguments

path A file path string, optional, default is current working directory.

ignore.case Logical, TRUE by default, optional. If FALSE, then this is case-sensitive.

... Optional other parameters passed to dir

Value

A directory listing.

See Also

dir2 dirdirs

download.files Try to download one or more files

Description

Attempts to download files, given name(s) all from one specified url, saving them in specified folder.
Just a wrapper that Uses download.file since that only downloads a single file.

Usage

download.files(
url,
files,
destfiles,
todir,
silent = FALSE,
overwrite = FALSE,
...

)

expand.gridMatrix 21

Arguments

url The url of folder with files to download, as character string, or a vector: If files is
specified, url should be the one folder without the filename. Otherwise, a vector
of full paths with filenames.

files Optional. A character vector of file names to be found at url. If missing, assumes
url is full path including filename.

destfiles Optional. A character vector of one or more file names. If missing, it uses same
names as in files at url.

todir The folder where downloaded files will be placed, as a character string.

silent Logical, optional, FALSE by default. Prints a message using cat() if TRUE.

overwrite Optional, logical, FALSE by default. If FALSE, checks to see if file already
exists in local folder and does not download if already exists. But note that may
cause problems if zero size file exists already due to earlier failed download.

... optional parameters passed to download.file

Value

Returns vector of numbers, each being 1 or 0 or 2 to signify success or failure or no attempt because
file already seems to exist locally.

Note

Could recode to use curl package, since curl::curl_download() is a replacement for base down-
load.file() with better performance, support for encryption (https, ftps), gzip compression, authenti-
cation, etc.

See Also

download.file curl_download

expand.gridMatrix Similar to expand.grid, but returns a matrix not data.frame

Description

This function is similar to expand.grid, in the sense that it returns a matrix that has 2 columns,
one for each input, and one row per combination, cycling through the first field first. It differs from
expand.grid in that this returns a matrix not data.frame, only accepts two parameters creating two
columns, for now, and lacks the other parameters of expand.grid

Usage

expand.gridMatrix(x, y)

Arguments

x required vector

y required vector

22 factor.as.numeric

Value

This function returns a matrix and tries to assign colnames based on the two input parameters. If
they are variables, it uses those names as colnames. Otherwise it uses "x" and "y" as colnames.

See Also

expand.grid

Examples

expand.gridMatrix(99:103, 1:2)
zz <- 1:10; top <- 1:2
expand.gridMatrix(zz, top)

factor.as.numeric Handle Numbers Stored as Factors

Description

Try to convert back to numeric any numbers stored as factors, e.g., in a data.frame that did not use
stringsAsFactors.

Usage

factor.as.numeric(x, stringsAsFactors = TRUE)

Arguments

x Data.frame or vector, required. (If matrix, it is returned unaltered as a matrix).
stringsAsFactors

Logical, TRUE by default, in which case a factor vector or col that has character
elements, and thus cannot be coerced to numeric without creating NA values, is
left as a factor. If FALSE, such a vector or col is converted to character class.

Details

Uses as.numeric(as.character(x)) on the factor cols or vector, but if there are both numbers and
characters, it leaves it as factor, not numeric (which would put NA values in place of character
elements). NOTE: ** Not optimized for speed yet, so it is slow.

Value

Returns a data.frame or vector, same shape as x (or matrix if given a matrix). Any column that was
integer or numeric is returned as numeric.
Any character column or vector is returned as numeric if it could be coerced to numeric without
creating any NA values because it has only numbers stored as text.
Logical is returned as logical.
When stringsAsFactors is TRUE, factor is returned as factor if it has any text that cannot be coerced
to non-NA numeric.
When stringsAsFactors is FALSE, factor is returned as character if it has any text that cannot be
coerced to non-NA numeric.

findArgs 23

See Also

as.vector, factor, data.table, matrix

Examples

a=factor(c(2,3,5)); b=factor(c('2', '3', '5')); c=factor(c('two','three','five'))
d=factor(c(2,'3','5')); e=factor(c(2,'three','five')); f=factor(c('2','three','5'))
g=factor(c(2,'3','five')); h=factor(c(NA, 3, 'five')); i=1:3;
j=rep('nonfactor',3); k=c(1,2,'text'); l=c(TRUE, FALSE, TRUE); m=c('2','3','5')
x=data.frame(a,b,c,d,e,f,g,h,i,j,k,l,m, stringsAsFactors=FALSE)
cat('\n')
cat('\n'); x; cat('\n'); cat('\n')
z=factor.as.numeric(x)
cat('\n'); z
cat('\n'); str(x)
cat('\n'); str(z);
cat('\n'); str(factor.as.numeric(x, stringsAsFactors=FALSE))
for (i in 1:length(x)) {out<-factor.as.numeric(x[,i]);cat(class(out), out,'\n') }
for (i in 1:length(x)) {

out<-factor.as.numeric(x[,i], stringsAsFactors = FALSE)
cat(class(out), out,'\n')

}

findArgs Get the arguments of a function

Description

Get the arguments of a function as shown in help for grep

Usage

findArgs(env, pattern)

Arguments

env e.g., ’package:analyze.stuff’

pattern search query as regular expression

Value

arguments

Examples

findArgs("package:base", "warn")

24 geomean

formatcomma Print numbers with commas and 0-2 decimal places

Description

Wrapper for format making it easier to use with my typical settings

Usage

formatcomma(x, big.m = ",", nsmall = 2, drop0trailing = FALSE, ...)

Arguments

x Numeric vector

big.m Default is a comma at every three digits (1,000,000)

nsmall Default is 2 digits after the decimal (3.14)

drop0trailing Default is FALSE, which means zeroes after the last nonzero digit in the decimal
portion are still shown (TRUE would mean 1.2 is shown, not 1.20)

... other parameters passed to format

Value

Same as format but with some preselected defaults

See Also

format

Examples

cbind(mynum=formatcomma(c(1452345, 1.2, 4234.12345)))
cbind(mynum=formatcomma(c(1452345, 1.2, 4234.12345), drop0trailing=FALSE))

geomean Geometric mean

Description

Returns the geometric mean of a vector of numbers, which is the nth root of their product.

Usage

geomean(x, na.rm = FALSE)

Arguments

x Vector of numbers, required.

na.rm Logical value, optional, FALSE by default. If FALSE, result is NA if any of the
values in x is NA. If TRUE, remove the NA values first.

get.os 25

Details

The geomean is one type of average, used in working with lognormal distributions, for example. Is
not as strongly influenced by extreme outliers as the arithmetic mean. See http://en.wikipedia.
org/wiki/Geometric_mean for many applications.

Value

Returns a single number that is the geometric mean of the numbers in x.

See Also

harmean mean rms

Examples

geomean(c(4,9)) # is the square root of 4 * 9

get.os Windows or Mac?

Description

This function returns a character string "win" or "mac" depending on which operating system is
being used (that’s all it does right now)

Usage

get.os()

Value

Returns "win" or "mac" currently.

See Also

os which is more powerful and easier to type

harmean Harmonic mean

Description

Returns the harmonic mean of a vector of numbers.

Usage

harmean(x, na.rm = FALSE)

http://en.wikipedia.org/wiki/Geometric_mean
http://en.wikipedia.org/wiki/Geometric_mean

26 installrequired

Arguments

x Vector of numbers, required.
na.rm Logical value, optional, FALSE by default. If FALSE, result is NA if any of the

values in x is NA. If TRUE, remove the NA values first.

Details

The harmonic mean is one type of average. It is the reciprocal of the arithmetic mean of the re-
ciprocals. See http://en.wikipedia.org/wiki/Harmonic_mean for many applications of the
harmonic mean.

Value

Returns a single number

See Also

geomean mean rms

Examples

harmean(c(1,2,4))

installrequired Require a list of packages, downloading and installing if necessary

Description

Convenient way to specify packages to attach, and install any that are not already installed. It only
installs a package if that package is not already available locally.

Usage

installrequired(x, github, gitlatest = FALSE)

Arguments

x vector of package names e.g., c("Hmisc", "data.table")
github optional vector of user slash package names e.g., "rstudio/shiny" but those can

just be in x now. If github = ’ej’ it installs several specific ones from github (also
see http://www.ejanalysis.com):

• ’rstudio/shiny’
• ’ejanalysis/analyze.stuff’
• ’ejanalysis/ejanalysis’
• ’ejanalysis/proxistat’
• ’ejanalysis/ejscreen’
• ’ejanalysis/ACSdownload’
• ’ejanalysis/countyhealthrankings’
• ’ejanalysis/UScensus2010blocks’

gitlatest Optional logical, default is FALSE which means not downloaded from github
if pkg of that name is already installed. If TRUE, download latest from github
even if already installed.

http://en.wikipedia.org/wiki/Harmonic_mean
http://www.ejanalysis.com

intersperse 27

Details

Uses require and if necessary uses install.packages or install_github If no parameters,
prints an example.

Examples

Not run:
installrequired('stringr')
installrequired('rstudio/shiny')
#
installrequired(c('Hmisc' , 'ejanalysis/analyze.stuff'))
or
installrequired('ej') # for several specific ones used in e

End(Not run)

intersperse Intersperse the elements of a vector, mixing 2d half of the list in with
the 1st half

Description

This function will take a vector and split it in half (it must have an even # of elements) and then will
intersperse the elements, so for example, if the vector’s starting order is 1,2,3, 4,5,6 the function
returns the vector ordered as 1,4, 2,5, 3,6

Usage

intersperse(x)

Arguments

x A vector with an even number of elements, required, character or numeric works.

Details

This is useful for example in reformatting a data.frame of Census data where the first n fields are
estimates and the next n fields are margin of error values corresponding to those estimates. This
function applied to the field names can reorder them to pair each estimate followed by its MOE.

Value

Returns a vector that contains all the elements of the original, but reordered.

Examples

mydf <- data.frame(e1=101:120, e2=102:121, e3=111:130,
m1=(101:120)*0.01, m2=(102:121)*0.01, m3=(111:130)*0.01)

mydf
mydf <- mydf[, intersperse(names(mydf))]
mydf

28 length2

lead.zeroes Add leading zeroes as needed

Description

Returns the vector that was supplied, but with leading zeroes added where needed to make all
elements have specified number of characters.

Usage

lead.zeroes(fips, length.desired)

Arguments

fips Character vector, which can be FIPS codes or other data. Required.

length.desired A single numeric value (recycled), or vector of numbers, required, specifying
how many characters long each returned string should be.

Details

This function can be useful in working with Census data where FIPS codes are often used. Moving
data to and from a spreadsheet can remove leading zeroes that may be necessary for proper data
management. This can apply to e.g., FIPS code for a block, block group, tract, county, or state.
Note: Number of digits in FIPS codes, assuming leading zeroes are there:
state 2 (2 cumulative)
county 3 (5 cum)
tract 6 (11 cum) (note 11 digits is ambiguous if not sure leading zero is there)
block group 1 (12 cum) (note 12 digits is ambiguous if not sure leading zero is there)
block 1 (13 cum)

Value

Returns a vector of same length as input parameter, NA for NA input elements

Examples

lead.zeroes(c('234','01234','3', NA, 'TEXT'), 5)

length2 Length of a list with or without NA values

Description

Replacement for length(). Finds count of items like length(), but if set na.rm=TRUE then it doesn’t
count the items that are NA

Usage

length2(x, na.rm = FALSE)

linefit 29

Arguments

x A vector, required.

na.rm Logical value, optional, FALSE by default. Should NA values be left out of the
count?

Value

Returns a single number.

Examples

length2(c(1,2,3,NA))
length2(c(1,2,3,NA), na.rm=TRUE)

linefit Add fit lines to a scatter plot

Description

Convenient wrapper for lowess(), lm(), and coef(line())

Usage

linefit(
x,
y,
type = "b",
cex = 4,
show.lowess = TRUE,
show.lm = TRUE,
show.line = TRUE

)

Arguments

x x values, required

y y values, required

type passed through to lines() for the lowess

cex scaling for lowess

show.lowess Logical value, optional, TRUE by default. Defines if lowess is shown

show.lm Logical value, optional, TRUE by default. Defines if lm line is shown

show.line Logical value, optional, TRUE by default. Defines if should show abline(coef(line(x,y)))

Details

This function adds lines to a scatter plot, using lines(lowess(x,y)), abline(lm(y~x)), and abline(coef(line(x,y)))
DOESN’T SEEM TO WORK IF log=’xy’ was used in original plot() NOTE: coef(line()) and lm()
give different results

30 linesofcode

Value

Provides a plot just as a side effect

Examples

Not run:
see

#?lm or ?aov or ?glm
?line
require(graphics)
plot(cars)
(z <- line(cars))
abline(coef(z))
Tukey-Anscombe Plot :
plot(residuals(z) ~ fitted(z), main = deparse(z$call))
?predict
?lowess
?scatterplot
#The scatterplot() function in the car package offers many enhanced features, including
#fit lines, marginal box plots, conditioning on a factor, and interactive point identification.
#Each of these features is optional.
Enhanced Scatterplot of MPG vs. Weight
by Number of Car Cylinders
library(car)
scatterplot(mpg ~ wt | cyl, data=mtcars,

xlab="Weight of Car", ylab="Miles Per Gallon",
main="Enhanced Scatter Plot",
labels=row.names(mtcars))

End(Not run)

linesofcode Counts lines of source code in .R files of package source

Description

This is just a way to summarize how many lines of code appear to be in the .R files in the folder that
a package is built from.

Usage

linesofcode(folder = getwd(), packages, recursive = TRUE, sums = FALSE)

Arguments

folder Default is current working directory. **This is NOT the base path of the package
itself! It is the full path of the folder within which is a folder for each package of
interest. For example, folder= ’~/Documents/R PACKAGES’ works but folder=
’~/Documents/R PACKAGES/mypkg’ does not see the package called mypkg

packages Default is all found in folder. Can specify a subset of those by name as character
vector.

recursive Default is TRUE, searches subfolders within specified folder.
sums Default is FALSE, but if TRUE it returns the count of .R files and lines of code

for each package found.

logposneg 31

Value

Returns a data.frame of results, with details depending on sums parameter. Also prints summary
info if sums=FALSE, and returns detailed info.

Examples

Not run:
linesofcode(folder= '~/Documents/R PACKAGES', packages=c('analyze.stuff', 'proxistat'))
x <- linesofcode(folder= '~/Documents/R PACKAGES')
x[order(x$code), c('filename', 'package', 'code')]

End(Not run)

logposneg log10(x) if positive, 0 if 0, -log10(-x) if negative

Description

Function that transforms a vector of numbers x into log10(x) if positive, 0 if 0, -log10(-x) if negative,
useful for graphing something on a log scale when it has negative values. This log scale expands
outward from zero in both directions.

Usage

logposneg(x)

Arguments

x numeric vector, required

Value

A numeric vector of same length as x

mem See what is using up memory

Description

See a list of the largest objects in memory, and how much RAM they are using up Uses object.size
to return info on memory consumption for largest n objects

Usage

mem(n = 10)

Arguments

n Numeric, default is 10. How many objects to show (e.g., top 10)

32 minNonzero

Value

Results in printing a list of objects and their sizes

Examples

Not run:
mem()

mem(15)

draw pie chart
pie(object.sizes(), main="Memory usage by object")

draw bar plot
barplot(object.sizes(),

main="Memory usage by object", ylab="Bytes", xlab="Variable name",
col=heat.colors(length(object.sizes())))

draw dot chart
dotchart(object.sizes(), main="Memory usage by object", xlab="Bytes")

################################## #
memory.size() and memory.limit() and object.sizes() comparison:
################################## #

memory.size() to print aggregate memory usage statistics

print(paste('R is using', memory.size(), 'MB out of limit', memory.limit(), 'MB'))

object.sizes() to see memory total used by objects:

NOTE: THIS DOES NOT MATCH TOTAL GIVEN BY memory.size();
it is only about half as much in the case I tried:
sum(as.numeric(object.sizes()))
same, in MEGABYTES:
unclass(sum(as.numeric(object.sizes())))/1e6
print to console in table format
object.sizes()
see a list of the top few variables:
head(cbind(object.sizes()))

End(Not run)

minNonzero Find minimum non-zero number(s) - BUT EXCLUDES COLUMNS
THAT ARE NOT NUMERIC OR ARE FACTOR**

Description

Returns minimum nonzero numbers in vector, matrix, or data.frame

Usage

minNonzero(mydf)

na.check 33

Arguments

mydf Required. Must be vector, matrix, or data.frame

Value

A number or vector of numbers

Examples

minNonzero(-1:6)
minNonzero(data.frame(a=0:10, b=1:11, c=c(0,1:9,NA), d='text', stringsAsFactors = FALSE))
minNonzero(data.frame(a=0:10, b=1:11, c=c(0,1:9,NA), d='3', stringsAsFactors = TRUE))

na.check Basic info on each col of data.frame

Description

Returns basic information on each field in a data.frame, like count of rows that are zero, negative,
NA, infinite, etc.

Slow - work in progress Leaves out logical, complex?, character, etc. cols

Usage

na.check(df, min.text = FALSE)

Arguments

df Matrix or data.frame to examine. Cannot be a single vector currently.

min.text Logical, optional, defaults to FALSE. If TRUE, tries to find minimum of num-
bers stored as text? Slows it down.

Value

Returns a vector of results, one per col of df

See Also

signTabulate in matrixStats minNonzero and experimental variations on na.check: na.check
na.check2

Examples

Not run:
system.time(x= na.check(data.frame(a=-1:1e6, b='text', c=c(NA, 1, 2)), min.text=FALSE))
system.time(x= na.check2(data.frame(a=-1:1e6, b='text', c=c(NA, 1, 2)), min.text=TRUE))
na.check(data.frame(a=-1:10, b='text', c=c(NA, 1, 2)))
na.check2(data.frame(a=-1:10, b='text', c=c(NA, 1, 2)))

End(Not run)

34 names2

na.check2 Basic info on each col of data.frame - testing faster way, but returns
text

Description

Returns basic information on each field in a data.frame, like count of rows that are zero, negative,
NA, infinite, etc.

Slow - work in progress Leaves out logical, complex?, character, etc. cols this version fails to handle
fields that are factor class!?

Usage

na.check2(df)

Arguments

df Matrix or data.frame to examine. Cannot be a single vector currently.

Value

Returns a vector of results, one per col of df

See Also

signTabulate in matrixStats minNonzero and experimental variations on na.check: na.check
na.check2

Examples

Not run:
system.time(x= na.check(data.frame(a=-1:1e6, b='text', c=c(NA, 1, 2)), min.text=FALSE))
system.time(x= na.check2(data.frame(a=-1:1e6, b='text', c=c(NA, 1, 2)), min.text=TRUE))
na.check(data.frame(a=-1:10, b='text', c=c(NA, 1, 2)))
na.check2(data.frame(a=-1:10, b='text', c=c(NA, 1, 2)))

End(Not run)

names2 Print names(data.frame) commented out for easy pasting into code

Description

Uses cat() to print names of data.frame, but in a column with # before each. Make it convenient to
copy/paste into .R code as comments

Usage

names2(x)

normalized 35

Arguments

x Data.frame, required

Value

Prints results

normalized Normalize raw scores as ratio of score to wtd mean

Description

Provides a data.frame that takes the matrix or data.frame and finds the weighted mean of each
column and then divides each column of values by the column’s weighted mean.

Usage

normalized(df, wts = NULL, na.rm = TRUE)

Arguments

df numeric Data.frame of one or more columns of values to be normalized, or
matrix or vector to be coerced to data.frame

wts numeric Weights to use when computing weighted mean of given column, one
weight per row in df (default=1) or per element of vector df. If omitted, default
is unweighted mean.

na.rm logical Whether to exclude rows where weight or value or both = NA.

Details

Uses scale

Value

matrix same size as df, but with all values in given column divided by weighted mean of that column

See Also

scale

Examples

Not run:
mydf_norm <- tbd
#

End(Not run)

36 overlaps

os Windows, Mac, or other Unix?

Description

Answers query about whether operating system is a certain type, or just reports type of operating
system.

Usage

os(x)

Arguments

x Optional query, must be among these: ’mac’, ’apple’, ’osx’, ’darwin’, ’win’,
’windows’, ’pc’, ’microsoft’, ’unix’

Value

If queried, returns TRUE or FALSE (or NA if query not recognized). If no query, returns ’win’,
’mac’, or ’unix’

See Also

get.os which is a bit more limited

Examples

os()
if (os('mac')) {cat("Hi, I'm a Mac\n")} else {cat('I am not a Mac\n')}

overlaps Counts for Intersect, Union, etc. for Two Sets

Description

This is just a convenient way to compare two sets (vectors) that overlap, to count how many are in
each set, how many are in a not b, in b not a, in both, etc.

Usage

overlaps(a, b, values = FALSE)

Arguments

a Required vector, such as list of FIPS character codes.

b Required vector

values Default is FALSE. If TRUE, output is logical data.frame with union of only the
unique elements as rownames, indicating which of those meet each criterion.

pause 37

Value

Returns a data.frame of counts by default, formatted for viewing as a small table. If values = TRUE,
returns a larger data.frame (see values parameter). See examples.

See Also

setdiff2, setops, intersectDiagram

Examples

overlaps(c('Selectric 251','Selectric 245'),
c('Selectric 245','Selectric 255','Selectric 255'))
overlaps(c('Selectric 251','Selectric 245'),
c('Selectric 245','Selectric 255','Selectric 255'), values = TRUE)
overlaps(state.abb[1:3], state.abb[3:4])
colSums(overlaps(state.abb[1:3], state.abb[3:4], values = TRUE))
colSums(overlaps(state.abb[1:3], state.abb[c(3:4,4,4,4,4,4)], values = TRUE))
overlaps(state.abb[1:3], state.abb[c(3:4,4,4,4,4,4)])
overlaps(state.abb[1:3], state.abb[3:4], values = TRUE)
Not run:
overlaps(ejanalysis::get.state.info()$ST, state.abb)
data(fips.state, package='acs')
overlaps(lead.zeroes(fips.state$STATE,2), ejanalysis::get.state.info()$FIPS.ST)
data(fips.county, package='acs')
overlaps(ejanalysis::get.county.info()$FIPS.COUNTY,

paste(analyze.stuff::lead.zeroes(fips.county$State.ANSI,2),
analyze.stuff::lead.zeroes(fips.county$County.ANSI,3), sep=''))

colSums(overlaps(ejanalysis::get.state.info()$ST, c(999, state.abb), values = TRUE) [, 2:8])

End(Not run)

pause Pause and wait specified number of seconds

Description

Do nothing until time is up. Pause for some reason, wait for a download, etc.

Usage

pause(seconds = 1)

Arguments

seconds Time in seconds. Optional, default is 1 second.

Details

The word pause is easier to remember than Sys.sleep, and Sys.sleep does not work on all systems
apparently.

38 pct.above

Value

No value is returned.

See Also

Sys.sleep

pct.above Number or percent of rows (for each col) where value exceeds cutoff(s)

Description

Count the number or percent of rows (for each col of a data.frame) where the value exceeds some
specified cutoff(s)

Usage

pct.above(
df,
benchmarks = "mean",
benchnames = "cutoff",
na.rm = FALSE,
or.tied = FALSE,
below = FALSE,
wts = 1,
of.what = "all"

)

Arguments

df Data.frame or matrix, required.

benchmarks Default is ’mean’ but otherwise this must be a number or numeric vector of
thresholds to compare values to.

benchnames Default is ’cutoff’ and this string is used to create colnames for the results, such
as above.cutoff.for.field1

na.rm Logical value, optional, TRUE by default. Defines whether NA values should
be removed before value is found. Otherwise result will be NA when any NA is
in a col.

or.tied Logical, FALSE by default, reporting on those > cutoff. But, if or.tied=TRUE,
this reports on those >= cutoff.

below Logical, FALSE by default, which counts how many are above cutoff (or tied if
or.tied). If TRUE, counts how many are below (or tied with) cutoff.

wts Number or vector, default is 1. Length must be a factor of # rows in df, so
length(df[,1]) is an integer multiple of length(wts) Applies weights to when
counting how many.

of.what Optional, character, ’all’ by default, defines xxx as the text used in "pct.above.xxx"
(or below) for fieldnames in results

pct.above 39

Details

below=FALSE by default, reports on those above (or tied with, if or.tied) cutoff. But if below=TRUE,
this reports on those below (or tied with, if or.tied) cutoff.

• If df (passed to the function) is a data.frame or matrix, the function returns a vector of length=
length(df) or number of cols in matrix.

• If df is just a vector, it is treated like a 1-column data.frame, so the function returns a single
value.

• If benchmarks (passed to the function) is a data.frame matching df in dimensions, each value
is used as the cutoff for the corresponding cell in df.

• If benchmarks is a vector of length= length(df), each value in benchmarks is the cutoff for the
corresponding column in df.

• If benchmarks is a shorter vector, it is recycled. (e.g., a vector of length 2 would use the first
benchmark as the cutoff for all odd columns of df, the second for all even columns of df).

• If benchmarks is a single numeric value, it is used as the cutoff value in every comparison for
all of df.

• If benchmarks is omitted, the default behavior is to use the arithmetic mean value a column of
df as the cutoff for that column of df.

• If benchnames is omitted, the word "cutoff" is used by default (unless benchmarks is also
omitted).

• If benchnames is specified but benchmarks is not, the benchmarks default to the column
means, so benchnames is ignored and "mean" is used instead.

• If wts is omitted the default is 1 which means no weighting. Just row counts.

• If wts is a vector of length= length(df[,1]) then each row of df uses the corresponding weight
and count is sum of wts not count of rows.

• If wts is shorter than that, it is recycled but # of rows in df must be an integer multiple of
length(wts).

NA values in df are not counted and are not in the numerator of pct.above() but the denomina-
tor of pct.above() is a count of all rows of df, not just the non-NA ones. These could be renamed
rows.above.count(), rows.above.pct(), rows.above.which() to follow convention of cols.above.count(),
cols.above.pct(), cols.above.which() and same using below too, like rows.below.pct() etc. and ***
should make param names consistent, like x not df, cutoff(s) not benchmarks?, or.tied not gte but
*** cols versions and all should have wts, na.rm, benchmarks as vector not just 1 number, bench-
names, params and ** should have a "below" version for each variant

Note Hmisc::wtd.mean is not exactly same as stats::weighted.mean since na.rm defaults differ
Hmisc::wtd.mean(x, weights=NULL, normwt="ignored", na.rm = TRUE) # Note na.rm defaults
differ.
weighted.mean(x, w, ..., na.rm = FALSE)

Value

Returns a vector of numbers of length equal to number of columns in df.

Note

Future work: these functions could have wts, na.rm, & allow cutoffs or benchmarks as a vector (not
just 1 number), & have benchnames.

40 pct.above

See Also

count.above pct.above pct.below to see, for each column, the count or percent of rows that
have values above or below a cutoff.

cols.above.count cols.above.which cols.above.pct to see, for each row, the count or which
or fraction of columns with numbers at/above/below cutoff.

Other functions for above and below: cols.above.count(), cols.above.pct(), cols.above.which(),
count.above(), count.below(), pct.below(), rows.above.count(), rows.above.pct(), rows.above.which(),
rows.below.count(), rows.below.pct()

Examples

x <- data.frame(a=1:20, b=10, c=c(1:9,100:110))
mywts <- c(rep(1,10), rep(2,10))
mybench <- c(3,100,10)
mynames <- c("HI","USavg","HealthStandard")

count.above(x, 0, wts=mywts)
count.above(x, 100, wts=mywts)
count.above(x, 10, wts=mywts)
count.above(x, mybench, wts=mywts)
cbind(count= count.above(x, mybench, mynames, wts=mywts))
cbind(pct= pct.above(x, benchmarks=mybench, benchnames=mynames, wts=mywts))
cbind(

count= count.above(x, mybench, mynames, wts=mywts),
pct= pct.above(x, benchmarks=mybench, benchnames=mynames, wts=mywts))

cbind(stat= pct.above(as.matrix(x), mybench, mynames, wts=mywts))
cbind(stat= pct.above(1:100, 98 , wts=mywts))
If only a single vector is passed, not a data.frame

#"Warning: df is a vector... converting to data.frame"

to find how many PLACES are at/above the 95th population-weighted percentile
(won't be exactly 5% of places, just 5% of people):
mybench2 <- sapply(x, function(z) Hmisc::wtd.quantile(z, mywts, probs=0.95, na.rm=TRUE))
count.above(x, benchmarks=mybench2, benchnames=paste('pop.95th.', names(x), sep=''), wts=1)
Not run:
to find how many PLACES are at/above the MEDIAN pop-wtd place
(won't be exactly half of places, just half of people):
mybench2 <- sapply(x, function(z) Hmisc::wtd.quantile(z, mywts, probs=0.50, na.rm=TRUE))
count.above(x, benchmarks=mybench2, benchnames=paste('pop.median.', names(x), sep=''), wts=1)

to find how many PEOPLE are at/above the 95th percentile place
(won't be exactly 5% of people, just 5% of places):
mybench2 <- sapply(x, function(z) quantile(z, probs=0.95, na.rm=TRUE))
count.above(x, benchmarks=mybench2, benchnames=paste('95th.', names(x), sep=''), wts=mywts)
to find how many PEOPLE are at/above the MEDIAN place
(won't be exactly 50% of people, just 50% of places):
mybench2 <- sapply(x, function(z) quantile(z, probs=0.50, na.rm=TRUE))
count.above(x, benchmarks=mybench2, benchnames=paste('median.', names(x), sep=''), wts=mywts)

cbind(pct.above(1:100, wts=mywts))
that does not recycle weights in this situation of a single vector argument
count.above(data.frame(a=c(1:10, NA)), 2, wts=mywts) # does not work if NA values
cbind(pct.above(data.frame(a=c(1:10, NA)), 0 , wts=mywts))
Gives "Error: wts must be a vector whose length is a factor of # rows in df,
so length(df[,1]) is an integer multiple of length(wts) "

pct.below 41

pct.above(data.frame(a=c(NA, NA, NA)), 3, wts=mywts)
Gives "Error - df is a single NA value or single column with only NA values"
count.above(x, c(3,1), wts=mywts) # 3,1 is recycled as 3,1,3 since x has 3 cols
pct.above(x, benchnames=mynames, wts=mywts)
that ignores names since default benchmarks are column means

End(Not run)

pct.below Number or percent of rows (for each col) where value is below cutoff(s)

Description

Count the number or percent of rows (for each col of a data.frame) where the value is below some
specified cutoff(s)

Usage

pct.below(
df,
benchmarks = "mean",
benchnames = "cutoff",
na.rm = FALSE,
or.tied = FALSE,
below = TRUE,
wts = 1,
of.what = "all"

)

Arguments

df Data.frame or matrix, required.

benchmarks Default is ’mean’ but otherwise this must be a number or numeric vector of
thresholds to compare values to.

benchnames Default is ’cutoff’ and this string is used to create colnames for the results

na.rm Logical value, optional, TRUE by default. Defines whether NA values should
be removed first. Otherwise result will be NA when any NA is in a col.

or.tied Logical, FALSE by default, reporting on those < cutoff. But, if or.tied=TRUE,
this reports on those <= cutoff.

below Logical, TRUE by default, which counts how many are below cutoff (or tied if
or.tied). If FALSE, counts how many are above (or tied with) cutoff.

wts Number or vector, default is 1. Length must be a factor of number of rows in df,
so length(df[,1]) is an integer multiple of length(wts) Applies weights to when
counting how many.

of.what Optional, character, ’all’ by default, defines xxx as the text used in "pct.above.xxx"
(or below) for fieldnames in results

Details

See pct.above for details, for which this is a wrapper.

42 pctiles

Value

Returns a vector of numbers of length equal to number of columns in df.

Note

Future work: these functions could have wts, na.rm, & allow cutoffs or benchmarks as a vector (not
just 1 number), & have benchnames.

See Also

count.above pct.above pct.below to see, for each column, the count or percent of rows that
have values above or below a cutoff.

cols.above.count cols.above.which cols.above.pct to see, for each row, the count or which
or fraction of columns with numbers at/above/below cutoff.

Other functions for above and below: cols.above.count(), cols.above.pct(), cols.above.which(),
count.above(), count.below(), pct.above(), rows.above.count(), rows.above.pct(), rows.above.which(),
rows.below.count(), rows.below.pct()

pctiles Show the rounded values at 100 percentiles

Description

Get a quick look at a distribution by seeing the 100 values that are the percentiles 1-100

Usage

pctiles(x, probs = (1:100)/100, na.rm = TRUE, digits = 3)

Arguments

x Required numeric vector of values whose distribution you want to look at.

probs Optional vector of fractions specifying percentiles. (1:100)/100 by default.

na.rm TRUE by default, specifies if NA values should be removed first.

digits Number, 3 by default, how many decimal places to round to

Details

NOTE: THIS ONLY SHOWS PERCENTILES AND MEAN FOR THE VALID (NOT NA) VAL-
UES !# Defining these types as type=1 and type="i/n" will create simple discontinuous quantiles,
without interpolation where there are jumps in the values analyzed. This is how should be calcu-
lating percentiles as of 2/2013. *** WARNING: Unless set type=1, the default type=7 in which
case quantile() FUNCTION INTERPOLATES, WHICH ISN’T OBVIOUS IN EVERY DATASET!
use type=1 to avoid interpolation. and pctiles() rounded results so interpolation would be even less
apparent.
The quantile function will NOT interpolate between values if type=1:
quantile(1:12, probs=(1:10)/10, type=1)
10 2 3 4 5 6 8 9 10 11 12
###########################
**** IMPORTANT ***

pctiles.a.over.b 43

###########################
*** WARNING: The wtd.quantile function DOES interpolate between values, even if type=’i/n’
There does not seem to be a way to fix that for the wtd.quantile() function. For example,
wtd.quantile(1:12, probs=(1:10)/10, type=’i/n’, weights=rep(1,12))
10 1.2 2.4 3.6 4.8 6.0 7.2 8.4 9.6 10.8 12.0

Value

Returns a data.frame

See Also

pctiles pctiles.exact pctiles.a.over.b wtd.pctiles.exact wtd.pctiles wtd.pctiles.fast

Examples

#

pctiles.a.over.b Show the rounded values at 100 percentiles for a/b (or zero if b=0)

Description

Get a quick look at a distribution by seeing the rounded values at 100 percentiles for a/b (setting a/b
to zero if b=0)

Usage

pctiles.a.over.b(a, b, digits = 3)

Arguments

a Required numeric vector of values that are numerator of ratio whose distribution
you want to look at.

b Required numeric vector of values that are denominator of ratio whose distribu-
tion you want to look at.

digits Number, 3 by default, specifying how many decimal places to round to

Details

NOTE: THIS ONLY SHOWS PERCENTILES AND MEAN FOR THE VALID (NOT NA) VAL-
UES !# Defining these types as type=1 and type="i/n" will create simple discontinuous quantiles,
without interpolation where there are jumps in the values analyzed. This is how should be calcu-
lating percentiles as of 2/2013. *** WARNING: Unless set type=1, the default type=7 in which
case quantile() FUNCTION INTERPOLATES, WHICH ISN’T OBVIOUS IN EVERY DATASET!
use type=1 to avoid interpolation. and pctiles() rounded results so interpolation would be even less
apparent.
The quantile function will NOT interpolate between values if type=1:
quantile(1:12, probs=(1:10)/10, type=1)
10 2 3 4 5 6 8 9 10 11 12

44 pctiles.exact

###########################
**** IMPORTANT ***
###########################
*** WARNING: The Hmisc::wtd.quantile function DOES interpolate between values, even if type=’i/n’
There does not seem to be a way to fix that for the Hmisc::wtd.quantile() function. For example,
Hmisc::wtd.quantile(1:12, probs=(1:10)/10, type=’i/n’, weights=rep(1,12))
10 1.2 2.4 3.6 4.8 6.0 7.2 8.4 9.6 10.8 12.0

Value

Returns a data.frame

See Also

pctiles pctiles.exact pctiles.a.over.b wtd.pctiles.exact wtd.pctiles wtd.pctiles.fast

Examples

#

pctiles.exact Show the not-rounded values at 100 percentiles

Description

Get a quick look at a distribution by seeing the 100 values that are the percentiles 1-100

Usage

pctiles.exact(x)

Arguments

x Required numeric vector of values whose distribution you want to look at.

Details

NOTE: THIS ONLY SHOWS PERCENTILES AND MEAN FOR THE VALID (NOT NA) VAL-
UES !# Defining these types as type=1 and type="i/n" will create simple discontinuous quantiles,
without interpolation where there are jumps in the values analyzed. This is how should be calcu-
lating percentiles as of 2/2013. *** WARNING: Unless set type=1, the default type=7 in which
case quantile() FUNCTION INTERPOLATES, WHICH ISN’T OBVIOUS IN EVERY DATASET!
use type=1 to avoid interpolation. and pctiles() rounded results so interpolation would be even less
apparent.
The quantile function will NOT interpolate between values if type=1:
quantile(1:12, probs=(1:10)/10, type=1)
10 2 3 4 5 6 8 9 10 11 12
###########################
**** IMPORTANT ***
###########################
*** WARNING: The Hmisc::wtd.quantile function DOES interpolate between values, even if type=’i/n’

pdf2 45

There does not seem to be a way to fix that for the Hmisc::wtd.quantile() function. For example,
Hmisc::wtd.quantile(1:12, probs=(1:10)/10, type=’i/n’, weights=rep(1,12))
10 1.2 2.4 3.6 4.8 6.0 7.2 8.4 9.6 10.8 12.0

Value

Returns a data.frame

See Also

pctiles pctiles.exact pctiles.a.over.b wtd.pctiles.exact wtd.pctiles wtd.pctiles.fast

Examples

#

pdf2 Overlay two simple histograms (pdf=probability density functions, not
pdf filetype)

Description

Overlay two simple histograms, for data below vs above a cutoff

Usage

pdf2(x, binx, threshold, n = 100, colors = c("gray", "red"), ...)

Arguments

x Variable for histogram
binx Variable that defines subsets
threshold Variable that defines cutoff, so binx<threshold is plotted first, in one color, then

binx>=threshold in other color is drawn over that
n Default is 100. n is just passed to the hist function.
colors Character vector length 2, with colors for first and second histogram
... Other named parameters sent to hist, such as main, xlab, ylab

Value

Just plots using hist.

Examples

Not run:
pdf2(
log10(bg$proximity.npl),
bg$bin.EJ.DISPARITY.proximity.npl.eo, 10,
main ='npl for high top 10 pct vs low EJ', xlab='NPL score log10'
)

End(Not run)

46 rmall

put.first Simple way to put certain cols first, in a data.frame

Description

Returns a data.frame with specified columns put first, before the others.

Usage

put.first(x, fields)

Arguments

x Required data.frame that will have its columns reordered

fields required character vector of strings that are among the elements of names(x)

Value

Returns a transformed data.frame with cols in new order

See Also

change.fieldnames

Examples

before <- data.frame(year=c(2,2,2), ID=3, numbers=4, last=1)
put.first(before, c('ID', 'numbers'))
after <- put.first(before, names(before)[length(before)]) # put last column first
before; after

rmall Help removing all objects from memory

Description

A simple way to get a reminder of how to clear all objects from memory because I always forget
how

Usage

rmall()

Value

prints how to do that

rms 47

rms Root Mean Square (RMS), or Quadratic Mean

Description

Returns the RMS, or quadratic mean of a vector of numbers.

Usage

rms(x, na.rm = FALSE)

Arguments

x Vector of numbers, required.

na.rm Logical value, optional, FALSE by default. If FALSE, result is NA if any of the
values in x is NA. If TRUE, remove the NA values first.

Details

The quadratic mean is one type of average. It is the square root of the arithmetic mean of the squares.
See http://en.wikipedia.org/wiki/Root_mean_square or http://mathworld.wolfram.com/
Root-Mean-Square.html for many applications

Value

Returns a single number

See Also

geomean mean harmean

Examples

rms(c(1,2,4))

rowMaxs Returns the max value of each row of a data.frame or matrix

Description

Returns maximum value of each row of a data.frame or matrix.

Usage

rowMaxs(df, na.rm = TRUE)

Arguments

df Data.frame or matrix, required.

na.rm Logical value, optional, TRUE by default. Defines whether NA values should be
removed first. Otherwise result will be NA when any NA is in the given vector.

http://en.wikipedia.org/wiki/Root_mean_square
http://mathworld.wolfram.com/Root-Mean-Square.html
http://mathworld.wolfram.com/Root-Mean-Square.html

48 rowMaxs

Details

** NOTE: The useful matrixStats package will provide the basis for extended rowMins, rowMax,
colMins, colMaxs functions to be made available through this package. Source: Henrik Bengtsson
(2015). matrixStats: Methods that Apply to Rows and Columns of a Matrix. R package version
0.13.1-9000.
https://github.com/HenrikBengtsson/matrixStats
Initially, separate functions were written here for those four functions, and the versions here were
more flexible and convenient for some purposes, e.g., handling data.frames and different na.rm de-
faults, but the matrixStats versions are much faster (e.g., by 4x or more). Ideally, this analyze.stuff
package would be modified to just extend those functions by providing them methods to handle
data.frames, not just matrix class objects, and perhaps provide new or different parameters or de-
faults, such as defaulting to na.rm=TRUE instead of FALSE, and handling factor class columns in
a data.frame. That has not been done yet, so colMaxs() etc. refer to the slower more flexible ones,
and the faster matrix-only ones are via matrixStats::colMaxs etc.

** NOTE: max() and min() and matrixStats::colMaxs from matrixStats etc. default to na.rm=FALSE,
but this function defaults to na.rm=TRUE because that just seems more frequently useful.

** NOTE: min and max & this function will handle character elements by coercing all others in
the column to character, which can be confusing – e.g., note that min(c(8,10,’txt’)) returns ’10’ not
’8’ and max returns ’txt’ (also see the help for Comparison)

If this worked just like max() and min(), cols that are factors would make this fail. max or min
of a factor fails, even if as.character() of the factor would return a valid numeric vector. That isn’t
an issue with a matrix, but a data.frame might have numbers stored as factor. To fix that, this uses
factor.as.numeric with parameters that try to convert character or factor columns to numeric.

Based on how min and max behave, return Inf or -Inf if no non-missing arguments to min or max
respectively. To suppress that warning when using this function, use suppressWarnings(func(x))

Value

Returns a vector of numbers of length equal to number of rows in df.

See Also

factor.as.numeric rowMaxs rowMins colMaxs colMins count.above pct.above pct.below
cols.above.which cols.above.pct

Other functions for max and min of rows and columns: colMaxs(), colMins(), rowMins()

Examples

blah <- rbind(NA, data.frame(a=c(0, 0:8), b=c(0.1+(0:9)), c=c(1:10), d=c(rep(NA, 10)),
e=TRUE, f=factor('factor'), g='words', stringsAsFactors=FALSE))

cbind(blah, min=rowMins(blah), max=rowMaxs(blah))
rbind(blah, min=colMins(blah), max=colMaxs(blah))
blah <- blah[, sapply(blah, function(x) is.numeric(x) | is.logical(x))]
cbind(blah, min=rowMins(blah), max=rowMaxs(blah),

mean=rowMeans(blah, na.rm=TRUE), sum=rowSums(blah, na.rm=TRUE))
rbind(blah, min=colMins(blah), max=colMaxs(blah),

mean=colMeans(blah, na.rm=TRUE), sum=colSums(blah, na.rm=TRUE))

https://github.com/HenrikBengtsson/matrixStats

rowMins 49

** Actually, matrixStats does this ~4x as quickly,
although no practical difference unless large dataset:
n <- 1e7

t1=Sys.time(); x=analyze.stuff::colMaxs(cbind(a=1:n, b=2, c=3, d=4, e=5)); t2=Sys.time()
print(difftime(t2,t1))
t1=Sys.time(); x= matrixStats::colMaxs(cbind(a=1:n, b=2, c=3, d=4, e=5)); t2=Sys.time()
print(difftime(t2,t1))
Note the latter cannot handle a data.frame:
Not run:
This would fail:
matrixStats::colMaxs(data.frame(a=1:10, b=2))
This works:
analyze.stuff::colMaxs(data.frame(a=1:10, b=2))

End(Not run)

rowMins Returns the min value of each row of a data.frame or matrix

Description

Returns minimum value of each row of a data.frame or matrix.

Usage

rowMins(df, na.rm = TRUE)

Arguments

df Data.frame or matrix, required.

na.rm Logical value, optional, TRUE by default. Defines whether NA values should be
removed first. Otherwise result will be NA when any NA is in the given vector.

Details

** NOTE: The useful matrixStats package will provide the basis for extended rowMins, rowMax,
colMins, colMaxs functions to be made available through this package. Source: Henrik Bengtsson
(2015). matrixStats: Methods that Apply to Rows and Columns of a Matrix. R package version
0.13.1-9000.
https://github.com/HenrikBengtsson/matrixStats
Initially, separate functions were written here for those four functions, and the versions here were
more flexible and convenient for some purposes, e.g., handling data.frames and different na.rm de-
faults, but the matrixStats versions are much faster (e.g., by 4x or more). Ideally, this analyze.stuff
package would be modified to just extend those functions by providing them methods to handle
data.frames, not just matrix class objects, and perhaps provide new or different parameters or de-
faults, such as defaulting to na.rm=TRUE instead of FALSE, and handling factor class columns in
a data.frame. That has not been done yet, so colMaxs() etc. refer to the slower more flexible ones,
and the faster matrix-only ones are via matrixStats::colMaxs etc.

** NOTE: max() and min() and matrixStats::colMaxs from matrixStats etc. default to na.rm=FALSE,
but this function defaults to na.rm=TRUE because that just seems more frequently useful.

https://github.com/HenrikBengtsson/matrixStats

50 rowMins

** NOTE: min and max & this function will handle character elements by coercing all others in
the column to character, which can be confusing – e.g., note that min(c(8,10,’txt’)) returns ’10’ not
’8’ and max returns ’txt’ (also see the help for Comparison)

If this worked just like max() and min(), cols that are factors would make this fail. max or min
of a factor fails, even if as.character() of the factor would return a valid numeric vector. That isn’t
an issue with a matrix, but a data.frame might have numbers stored as factor. To fix that, this uses
factor.as.numeric with parameters that try to convert character or factor columns to numeric.

Based on how min and max behave, return Inf or -Inf if no non-missing arguments to min or max
respectively. To suppress that warning when using this function, use suppressWarnings(func(x))

Value

Returns a vector of numbers of length equal to number of rows in df.

See Also

factor.as.numeric rowMaxs rowMins colMaxs colMins count.above pct.above pct.below
cols.above.which cols.above.pct

Other functions for max and min of rows and columns: colMaxs(), colMins(), rowMaxs()

Examples

blah <- rbind(NA, data.frame(a=c(0, 0:8), b=c(0.1+(0:9)), c=c(1:10), d=c(rep(NA, 10)),
e=TRUE, f=factor('factor'), g='words', stringsAsFactors=FALSE))

cbind(blah, min=rowMins(blah), max=rowMaxs(blah))
rbind(blah, min=colMins(blah), max=colMaxs(blah))
blah <- blah[, sapply(blah, function(x) is.numeric(x) | is.logical(x))]
cbind(blah, min=rowMins(blah), max=rowMaxs(blah),

mean=rowMeans(blah, na.rm=TRUE), sum=rowSums(blah, na.rm=TRUE))
rbind(blah, min=colMins(blah), max=colMaxs(blah),

mean=colMeans(blah, na.rm=TRUE), sum=colSums(blah, na.rm=TRUE))
** Actually, matrixStats does this ~4x as quickly,
although no practical difference unless large dataset:
n <- 1e7

t1=Sys.time(); x=analyze.stuff::colMaxs(cbind(a=1:n, b=2, c=3, d=4, e=5)); t2=Sys.time()
print(difftime(t2,t1))
t1=Sys.time(); x= matrixStats::colMaxs(cbind(a=1:n, b=2, c=3, d=4, e=5)); t2=Sys.time()
print(difftime(t2,t1))
Note the latter cannot handle a data.frame:
Not run:
This would fail:
matrixStats::colMaxs(data.frame(a=1:10, b=2))
This works:
analyze.stuff::colMaxs(data.frame(a=1:10, b=2))

End(Not run)

rows.above.count 51

rows.above.count Number or percent of rows (for each col) where value exceeds cutoff(s)

Description

Alias for count.above

Usage

rows.above.count(
df,
benchmarks = "mean",
benchnames = "cutoff",
or.tied = FALSE,
below = FALSE,
wts = 1,
na.rm = TRUE

)

Arguments

df Data.frame or matrix, required.

benchmarks Default is ’mean’ but otherwise this must be a number or numeric vector of
thresholds to compare values to.

benchnames Default is ’cutoff’ and this string is used to create colnames for the results, such
as above.cutoff.for.field1

or.tied Logical, FALSE by default, reporting on those > cutoff. But, if or.tied=TRUE,
this reports on those >= cutoff.

below Logical, FALSE by default, which counts how many are above cutoff (or tied if
or.tied). If TRUE, counts how many are below (or tied with) cutoff.

wts Number or vector, default is 1. Length must be a factor of number of rows in df,
so length(df[,1]) is an integer multiple of length(wts) Applies weights to when
counting how many.

na.rm Logical value, optional, TRUE by default. Defines whether NA values should
be removed first. Otherwise result will be NA when any NA is in a col.

Value

Returns a vector of numbers of length equal to number of columns in df.

Note

Future work: these functions could have wts, na.rm, & allow cutoffs or benchmarks as a vector (not
just 1 number), & have benchnames.

52 rows.above.pct

See Also

count.above pct.above pct.below to see, for each column, the count or percent of rows that
have values above or below a cutoff.

cols.above.count cols.above.which cols.above.pct to see, for each row, the count or which
or fraction of columns with numbers at/above/below cutoff.

Other functions for above and below: cols.above.count(), cols.above.pct(), cols.above.which(),
count.above(), count.below(), pct.above(), pct.below(), rows.above.pct(), rows.above.which(),
rows.below.count(), rows.below.pct()

rows.above.pct Number or percent of rows (for each col) where value exceeds cutoff(s)

Description

Alias for pct.above

Usage

rows.above.pct(
df,
benchmarks = "mean",
benchnames = "cutoff",
na.rm = FALSE,
or.tied = FALSE,
below = FALSE,
wts = 1,
of.what = "all"

)

Arguments

df Data.frame or matrix, required.

benchmarks Default is ’mean’ but otherwise this must be a number or numeric vector of
thresholds to compare values to.

benchnames Default is ’cutoff’ and this string is used to create colnames for the results, such
as above.cutoff.for.field1

na.rm Logical value, optional, TRUE by default. Defines whether NA values should
be removed before value is found. Otherwise result will be NA when any NA is
in a col.

or.tied Logical, FALSE by default, reporting on those > cutoff. But, if or.tied=TRUE,
this reports on those >= cutoff.

below Logical, FALSE by default, which counts how many are above cutoff (or tied if
or.tied). If TRUE, counts how many are below (or tied with) cutoff.

wts Number or vector, default is 1. Length must be a factor of # rows in df, so
length(df[,1]) is an integer multiple of length(wts) Applies weights to when
counting how many.

of.what Optional, character, ’all’ by default, defines xxx as the text used in "pct.above.xxx"
(or below) for fieldnames in results

rows.above.which 53

Value

Returns a vector of numbers of length equal to number of columns in df.

Note

Future work: these functions could have wts, na.rm, & allow cutoffs or benchmarks as a vector (not
just 1 number), & have benchnames.

See Also

count.above pct.above pct.below to see, for each column, the count or percent of rows that
have values above or below a cutoff.

cols.above.count cols.above.which cols.above.pct to see, for each row, the count or which
or fraction of columns with numbers at/above/below cutoff.

Other functions for above and below: cols.above.count(), cols.above.pct(), cols.above.which(),
count.above(), count.below(), pct.above(), pct.below(), rows.above.count(), rows.above.which(),
rows.below.count(), rows.below.pct()

rows.above.which Does each Row have a Value at or above Cutoff(s)

Description

Flag which cells are at or above some cutoff(s) or mean.

Usage

rows.above.which(x, cutoff, or.tied = FALSE, below = FALSE)

Arguments

x Data.frame or matrix of numbers to be compared to cutoff value.

cutoff The numeric threshold or cutoff to which numbers are compared. Default is
arithmetic mean of row. Usually one number, but can be a vector of same length
as number of rows, in which case each row can use a different cutoff.

or.tied Logical. Default is FALSE, which means we check if number in x is greater
than the cutoff (>). If TRUE, check if greater than or equal (>=).

below Logical. Default is FALSE. If TRUE, uses > or >= cutoff. If FALSE, uses < or
<= cutoff.

Details

For a matrix with a few cols of related data, find which cells are at/above (or below) some cutoff.
Returns a logical matrix, with TRUE for each cell that is at/above the cutoff. Can be used in
identifying places (rows) where some indicator(s) is/are at/above a cutoff, threshold value.

Value

Returns a logical matrix the same size as x. ** Note this is different than which – That function
returns the positions of TRUE elements but this returns TRUE or FALSE for all elements.

54 rows.below.count

Note

Future work: these functions could have wts, na.rm, & allow cutoffs or benchmarks as a vector (not
just 1 number), & have benchnames.

See Also

count.above pct.above pct.below to see, for each column, the count or percent of rows that
have values above or below a cutoff.

cols.above.count cols.above.which cols.above.pct to see, for each row, the count or which
or fraction of columns with numbers at/above/below cutoff.

Other functions for above and below: cols.above.count(), cols.above.pct(), cols.above.which(),
count.above(), count.below(), pct.above(), pct.below(), rows.above.count(), rows.above.pct(),
rows.below.count(), rows.below.pct()

Examples

out <- cols.above.which(x<-data.frame(a=1:10, b=rep(7,10), c=7:16), cutoff=7)
out
out # default is or.tied=FALSE
out <- cols.above.which(data.frame(a=1:10, b=rep(7,10), c=7:16),

cutoff=7, or.tied=TRUE, below=TRUE)
out
out <- cols.above.which(data.frame(a=1:10, b=rep(7,10), c=7:16))
Compares each number in each row to the row's mean.

out

rows.below.count Number or percent of rows (for each col) where value is below cutoff(s)

Description

Alias for count.below

Usage

rows.below.count(
df,
benchmarks = "mean",
benchnames = "cutoff",
na.rm = TRUE,
or.tied = FALSE,
below = TRUE,
wts = 1

)

Arguments

df Data.frame or matrix, required.

benchmarks Default is ’mean’ but otherwise this must be a number or numeric vector of
thresholds to compare values to.

rows.below.pct 55

benchnames Default is ’cutoff’ and this string is used to create colnames for the results

na.rm Logical value, optional, TRUE by default. Defines whether NA values should
be removed first. Otherwise result will be NA when any NA is in a col.

or.tied Logical, FALSE by default, reporting on those < cutoff. But, if or.tied=TRUE,
this reports on those <= cutoff.

below Logical, TRUE by default, which counts how many are below cutoff (or tied if
or.tied). If FALSE, counts how many are above (or tied with) cutoff.

wts Number or vector, default is 1. Length must be a factor of number of rows in df,
so length(df[,1]) is an integer multiple of length(wts) Applies weights to when
counting how many.

Details

See count.below for details, for which this is a wrapper.

Value

Returns a vector of numbers of length equal to number of columns in df.

Note

Future work: these functions could have wts, na.rm, & allow cutoffs or benchmarks as a vector (not
just 1 number), & have benchnames.

See Also

count.above pct.above pct.below to see, for each column, the count or percent of rows that
have values above or below a cutoff.

cols.above.count cols.above.which cols.above.pct to see, for each row, the count or which
or fraction of columns with numbers at/above/below cutoff.

Other functions for above and below: cols.above.count(), cols.above.pct(), cols.above.which(),
count.above(), count.below(), pct.above(), pct.below(), rows.above.count(), rows.above.pct(),
rows.above.which(), rows.below.pct()

rows.below.pct Number or percent of rows (for each col) where value is below cutoff(s)

Description

Alias for pct.below

Usage

rows.below.pct(
df,
benchmarks = "mean",
benchnames = "cutoff",
na.rm = FALSE,
or.tied = FALSE,
below = FALSE,

56 rows.below.pct

wts = 1,
of.what = "all"

)

Arguments

df Data.frame or matrix, required.

benchmarks Default is ’mean’ but otherwise this must be a number or numeric vector of
thresholds to compare values to.

benchnames Default is ’cutoff’ and this string is used to create colnames for the results

na.rm Logical value, optional, TRUE by default. Defines whether NA values should
be removed first. Otherwise result will be NA when any NA is in a col.

or.tied Logical, FALSE by default, reporting on those < cutoff. But, if or.tied=TRUE,
this reports on those <= cutoff.

below Logical, TRUE by default, which counts how many are below cutoff (or tied if
or.tied). If FALSE, counts how many are above (or tied with) cutoff.

wts Number or vector, default is 1. Length must be a factor of number of rows in df,
so length(df[,1]) is an integer multiple of length(wts) Applies weights to when
counting how many.

of.what Optional, character, ’all’ by default, defines xxx as the text used in "pct.above.xxx"
(or below) for fieldnames in results

Value

Returns a vector of numbers of length equal to number of columns in df.

Note

Future work: these functions could have wts, na.rm, & allow cutoffs or benchmarks as a vector (not
just 1 number), & have benchnames.

See Also

count.above pct.above pct.below to see, for each column, the count or percent of rows that
have values above or below a cutoff.

cols.above.count cols.above.which cols.above.pct to see, for each row, the count or which
or fraction of columns with numbers at/above/below cutoff.

Other functions for above and below: cols.above.count(), cols.above.pct(), cols.above.which(),
count.above(), count.below(), pct.above(), pct.below(), rows.above.count(), rows.above.pct(),
rows.above.which(), rows.below.count()

setdiff2 57

setdiff2 Differences between sets a and b

Description

Returns the elements that in a or b but not in both (i.e., the differences between sets a and b)

Usage

setdiff2(a, b)

Arguments

a Required vector

b Required vector

Value

Vector of elements

See Also

setdiff which is a bit different

Examples

setdiff2(1:10, 3:12)
setdiff2(c('a','b','c'), c('b','c','d'))

signifarray Specify Significant Digits for Each Column

Description

Given a matrix or numeric data.frame, round each column to a specified column-specific number of
significant digits.

Usage

signifarray(dat, digits = 6)

Arguments

dat Required, matrix or numeric data.frame with the values to be rounded.

digits Optional, 6 by default. Can be a vector as long as the number of columns in
dat, where each elements specifies the number of significant digits to retain for
numbers in the corresponding column of dat.

Value

Returns dat, but with numbers rounded based on digits parameter.

58 similar

See Also

signif

Examples

signifarray(matrix(rnorm(9*5), ncol=5), 1:5)
signifarray(data.frame(a=rnorm(10), b=rnorm(10), c=rnorm(10)), 1:3)

similar See how closely numeric values match in 2 datasets

Description

Compare two vectors, matrices, or data.frames of numbers to see how often they are similar.

Usage

similar(a, b, tol = 99.99, na.rm = FALSE, shownames = TRUE)

Arguments

a Required first vector, data.frame, or matrix

b Required second vector, data.frame, or matrix

tol Number, 99.99 by default, specifying tolerance as a percentage 0-100, such that
"similar" is defined as the two values being within 100-tol percent of each other.

na.rm Logical value, optional, FALSE by default. not implemented here yet. Should
NA values be removed first, or compared and treated as NA matches NA.

shownames Logical value, optional, TRUE by default. Not used. Should names be shown in
results?

Details

This function returns a matrix or vector showing how many rows in vector a are within 100-tol
percent of the value in vector b. May want to add a 3d case, where NA can match NA.

Value

Data.frame showing what # of rows are "similar" in dataset a vs b, for each column.

See Also

similar.p, all.equal, identical, isTRUE, ==, all

Examples

similar.p(1:10, (1:10) * 1.001)
similar.p(data.frame(x=1:10, y=101:110), data.frame(other=1.001*(1:10),
other2=c(101:109, 110.01)))

similar.p 59

similar.p See how closely numeric values match in 2 datasets

Description

Compare two vectors, matrices, or data.frames of numbers to see how often they are similar.

Usage

similar.p(a, b, tol = 99.99, na.rm = FALSE)

Arguments

a Required first vector, data.frame, or matrix

b Required second vector, data.frame, or matrix

tol Number, 99.99 by default, specifying tolerance as a percentage 0-100, such that
"similar" is defined as the two values being within 100-tol percent of each other.

na.rm Logical value, optional, FALSE by default. not implemented here yet. Should
NA values be removed first, or compared and treated as NA matches NA.

Details

This function returns a matrix or vector showing how many rows in vector a are within 100-tol
percent of the value in vector b. May want to add a 3d case, where NA can match NA.

Value

Data.frame showing what

See Also

similar, all.equal, identical, isTRUE, ==, all

Examples

similar(1:10, (1:10) * 1.001)
similar(
data.frame(x=1:10, y=101:110),
data.frame(other=1.001*(1:10), other2=c(101:109, 110.01))
)

60 tb

tabular Format a table in roxygen documentation of function in a package

Description

modified version of func in help section on formatting in roxygen2 package

Usage

tabular(df, ...)

Arguments

df data.frame required

... optional parameters passed through to lapply(df, format, ...)

Value

Returns text that can be pasted into documentation of a function or data in a package

See Also

Help on formatting in roxygen2

Examples

tabular(mtcars[1:5, 1:5])
tabular(df = data.frame(a=7:16, b='stuff', c=999, d=c('blah','junk')))

tb wrapper for table() that sorts by counts, decreasing

Description

wrapper for table() that sorts by counts, decreasing

Usage

tb(x, useNA = "always", ...)

Arguments

x required, passed to table(x)

useNA default is ’always’, passed to table()

... other parameters passed to table() – cannot pass anything to cbind or sort like
decreasing=FALSE

Value

like cbind

unzip.files 61

unzip.files Unzip multiple zip files

Description

Wrapper for unzip which unzips a single file.

Usage

unzip.files(
zipfile,
files = NULL,
exdir = ".",
unzip = "internal",
overwrite = TRUE,
...

)

Arguments

zipfile vector of names of files to unzip

files Optional, NULL by default which signifies all files in each zipfile will be ex-
tracted. Otherwise, a list, with the nth element being a vector (length 1 or more)
of character string names of files to extract from the nth zipfile.

exdir The directory to extract files to (the equivalent of unzip -d). It will be created if
necessary.

unzip See help for unzip

overwrite Logical, optional, TRUE by default which means the local file is not overwritten
if it already exists.

... Other arguments passed through to unzip

Value

Returns a list of the filepaths extracted to, from each zipfile. Names of list are the zip file names.

wtd.colMeans Weighted Mean of each Column - WORK IN PROGRESS (NA HAN-
DLING NOT YET TESTED)

Description

Returns weighted mean of each column of a data.frame or matrix, based on specified weights, one
weight per row. Now based on data.table unlike wtd.colMeans2

Usage

wtd.colMeans(x, wts, by, na.rm = TRUE, dims = 1)

62 wtd.colMeans

Arguments

x Data.frame or matrix, required.

wts Weights, optional, defaults to 1 which is unweighted, numeric vector of length
equal to number of rows

by Optional vector, default is none, that can provide a single column name (as
character) or character vector of column names, specifying what to group by,
producing the weighted mean within each group. See help for data.table

na.rm Logical value, optional, TRUE by default. Defines whether NA values should
be removed before result is found. Otherwise result will be NA when any NA is
in a vector.

dims dims=1 is default. Not used. integer: Which dimensions are regarded as ’rows’
or ’columns’ to sum over. For row, the sum or mean is over dimensions dims+1,
...; for col it is over dimensions 1:dims.

Details

** not yet handling factor or character fields well. For cols with NA values, mean uses total number
of rows (or sum of non-NA weights) as denominator?***, not just rows where the actual value is
non-NA!
Note Hmisc::wtd.mean is not exactly same as stats::weighted.mean since na.rm defaults differ
Hmisc::wtd.mean(x, weights=NULL, normwt="ignored", na.rm = TRUE) # Note na.rm defaults
differ.
weighted.mean(x, w, ..., na.rm = FALSE)

Value

If by is not specified, returns a vector of numbers of length equal to number of columns in df. If by
is specified, returns weighted mean for each column in each subset defined via by.

Examples

library(analyze.stuff)
n <- 1e6
mydf <- data.frame(pop=1000 + abs(rnorm(n, 1000, 200)), v1= runif(n, 0, 1),
v2= rnorm(n, 100, 15), REGION=c('R1','R2',sample(c('R1', 'R2', 'R3'), n-2, replace=TRUE)),
stringsAsFactors = FALSE)
mydf$pop[mydf$REGION=='R2'] <- 4 * mydf$pop[mydf$REGION=='R2']
mydf$v1[mydf$REGION=='R2'] <- 4 * mydf$v1[mydf$REGION=='R2']
wtd.colMeans(mydf[,1:3])
wtd.colMeans(mydf[,1:3], wts=mydf$pop)
wtd.colMeans(mydf, by='REGION')
R HANGS/STUCK: # wtd.colMeans(mydf[1:100,1:3], by=mydf$REGION, wts=mydf$pop)
mydf2 <- data.frame(a=1:3, b=c(1,2,NA))
wtd.colMeans(mydf2)
wtd.colMeans(mydf2, na.rm=TRUE)

wtd.colMeans2 63

wtd.colMeans2 Weighted Mean of each Column - WORK IN PROGRESS

Description

Returns weighted mean of each column of a data.frame or matrix, based on specified weights, one
weight per row. But also see data.table used for wtd.colMeans

Usage

wtd.colMeans2(x, wts, by, na.rm = FALSE, dims = 1)

Arguments

x Data.frame or matrix, required.
wts Weights, optional, defaults to nothing i.e. unweighted, and if specified must be

vector of weights recycled to be same length as NROW(x) # not the name of the
weights field in data.frame x, as single character string, e.g., "weightcol"

by Optional vector, default is none, that can provide a single column name (as
character) or character vector of column names,

na.rm Logical value, optional, TRUE by default. Defines whether NA values should
be removed before result is found. Otherwise result will be NA when any NA is
in a vector.

dims dims=1 is default. **Not used.** integer: Which dimensions are regarded as
’rows’ or ’columns’ to sum over. For row*, the sum or mean is over dimensions
dims+1, ...; for col* it is over dimensions 1:dims.

Value

Returns a vector of numbers of length equal to number of columns in df.

See Also

wtd.colMeans wtd.rowMeans wtd.rowSums rowMaxs rowMins colMins

Examples

x=data.frame(a=c(NA, 2:10), b=rep(100,10), c=rep(3,10))
w=c(1.1, 2, NA)
cbind(x, wtd.rowMeans(x, w))
cbind(x, wtd.rowSums(x, w))
x=data.frame(a=c(NA, 2:4), b=rep(100,4), c=rep(3,4))
w=c(1.1, 2, NA, 0)
print(cbind(x,w, wtd=w*x))
print(wtd.colMeans(x, w, na.rm=TRUE))
#rbind(cbind(x,w,wtd=w*x), c(wtd.colMeans(x,w,na.rm=TRUE), 'wtd.colMeans', rep(NA,length(w))))

x=data.frame(a=c(NA, 2:10), b=rep(100,10), c=rep(3,10))
w=c(1.1, 2, NA, rep(1, 7))
print(cbind(x,w, wtd=w*x))
rbind(cbind(x, w), cbind(wtd.colMeans(x, w, na.rm=TRUE), w='wtd.colMeans'))
print(w*cbind(x,w))

64 wtd.pctiles

wtd.pctiles Show the rounded values at 100 weighted percentiles

Description

Get a quick look at a weighted distribution by seeing the 100 values that are the weighted percentiles
1-100

Usage

wtd.pctiles(
x,
wts = NULL,
na.rm = TRUE,
type = "i/n",
probs = (1:100)/100,
digits = 3

)

Arguments

x Required, numeric vector (or data.frame) of values whose distribution(s) you
want to look at.

wts NULL by default, or vector of numbers (same length as x vector or as a column
of x) to use as weights in Hmisc::wtd.quantile

na.rm Logical optional TRUE by default, in which case NA values are removed first.
type ’i/n’ is default. See help for wtd.quantile[Hmisc]()
probs fractions 0-1, optional, (1:100)/100 by default, define quantiles to use
digits Number, 3 by default, specifying how many decimal places to round to in results

Details

Provides weighted percentiles using wtd.quantile

NOTE: THIS ONLY SHOWS PERCENTILES AND MEAN FOR THE VALID (NOT NA) VAL-
UES ! Defining these types as type=1 and type="i/n" will create simple discontinuous quantiles,
without interpolation where there are jumps in the values analyzed. *** WARNING: Unless set
type=1, the default type=7 in which case quantile() FUNCTION INTERPOLATES, WHICH ISN’T
OBVIOUS IN EVERY DATASET! use type=1 to avoid interpolation. and pctiles() rounded results
so interpolation would be even less apparent.
The quantile function will NOT interpolate between values if type=1:
quantile(1:12, probs=(1:10)/10, type=1)
10 2 3 4 5 6 8 9 10 11 12
###########################
**** IMPORTANT ***
###########################
*** WARNING: The Hmisc::wtd.quantile function DOES interpolate between values, even if type=’i/n’
There does not seem to be a way to fix that for the Hmisc::wtd.quantile() function. For example,
Hmisc::wtd.quantile(1:12, probs=(1:10)/10, type=’i/n’, weights=rep(1,12))
10 1.2 2.4 3.6 4.8 6.0 7.2 8.4 9.6 10.8 12.0

wtd.pctiles.exact 65

Value

Returns a data.frame, one row per probs, so 100 by default (1

See Also

pctiles pctiles.exact pctiles.a.over.b wtd.pctiles.exact wtd.pctiles wtd.pctiles.fast

wtd.pctiles.exact Show the values at 100 weighted percentiles

Description

Get a quick look at a weighted distribution by seeing the 100 values that are the percentiles 1-100

Usage

wtd.pctiles.exact(
x,
wts = NULL,
na.rm = TRUE,
type = "i/n",
probs = (1:100)/100

)

Arguments

x Required numeric vector of values whose distribution you want to look at.

wts NULL by default, or vector of numbers to use as weights in Hmisc::wtd.quantile

na.rm Logical optional TRUE by default, in which case NA values are removed first.

type ’i/n’ is default. See help for wtd.quantile[Hmisc]()

probs fractions 0-1, optional, (1:100)/100 by default, define quantiles to use

Details

Provides weighted percentiles using wtd.quantile

NOTE: THIS ONLY SHOWS PERCENTILES AND MEAN FOR THE VALID (NOT NA) VAL-
UES !# Defining these types as type=1 and type="i/n" will create simple discontinuous quantiles,
without interpolation where there are jumps in the values analyzed. This is how should be calcu-
lating percentiles as of 2/2013. *** WARNING: Unless set type=1, the default type=7 in which
case quantile() FUNCTION INTERPOLATES, WHICH ISN’T OBVIOUS IN EVERY DATASET!
use type=1 to avoid interpolation. and pctiles() rounded results so interpolation would be even less
apparent.
The quantile function will NOT interpolate between values if type=1:
quantile(1:12, probs=(1:10)/10, type=1)
10 2 3 4 5 6 8 9 10 11 12
###########################
**** IMPORTANT ***
###########################
*** WARNING: The Hmisc::wtd.quantile function DOES interpolate between values, even if type=’i/n’

66 wtd.pctiles.fast

There does not seem to be a way to fix that for the Hmisc::wtd.quantile() function. For example,
Hmisc::wtd.quantile(1:12, probs=(1:10)/10, type=’i/n’, weights=rep(1,12))
10 1.2 2.4 3.6 4.8 6.0 7.2 8.4 9.6 10.8 12.0

Value

Returns a data.frame

See Also

pctiles pctiles.exact pctiles.a.over.b wtd.pctiles.exact wtd.pctiles wtd.pctiles.fast

wtd.pctiles.fast Show the values at 100 weighted percentiles

Description

Get a quick look at a weighted distribution by seeing the 100 values that are the weighted percentiles
1-100

Usage

wtd.pctiles.fast(x, wts = NULL, na.rm = TRUE)

Arguments

x Required numeric vector of values whose distribution you want to look at.

wts NULL by default, or vector of numbers to use as weights in Hmisc::wtd.quantile

na.rm Logical optional TRUE by default, in which case NA values are removed first.

Details

Provides weighted percentiles without using wtd.quantile

NOTE: THIS ONLY SHOWS PERCENTILES AND MEAN FOR THE VALID (NOT NA) VAL-
UES ! Defining these types as type=1 and type="i/n" will create simple discontinuous quantiles,
without interpolation where there are jumps in the values analyzed. *** WARNING: Unless set
type=1, the default type=7 in which case quantile() FUNCTION INTERPOLATES, WHICH ISN’T
OBVIOUS IN EVERY DATASET! use type=1 to avoid interpolation. and pctiles() rounded results
so interpolation would be even less apparent.
The quantile function will NOT interpolate between values if type=1:
quantile(1:12, probs=(1:10)/10, type=1)
10 2 3 4 5 6 8 9 10 11 12
###########################
**** IMPORTANT ***
###########################
*** WARNING: The Hmisc::wtd.quantile function DOES interpolate between values, even if type=’i/n’
There does not seem to be a way to fix that for the Hmisc::wtd.quantile() function. For example,
Hmisc::wtd.quantile(1:12, probs=(1:10)/10, type=’i/n’, weights=rep(1,12))
10 1.2 2.4 3.6 4.8 6.0 7.2 8.4 9.6 10.8 12.0

wtd.rowMeans 67

Value

Returns a data.frame

See Also

pctiles pctiles.exact pctiles.a.over.b wtd.pctiles.exact wtd.pctiles wtd.pctiles.fast

wtd.rowMeans Weighted Mean of each Row - WORK IN PROGRESS

Description

Returns weighted mean of each row of a data.frame or matrix, based on specified weights, one
weight per column.

Usage

wtd.rowMeans(x, wts = 1, na.rm = FALSE, dims = 1)

Arguments

x Data.frame or matrix, required.

wts Weights, optional, defaults to 1 which is unweighted, numeric vector of length
equal to number of columns

na.rm Logical value, optional, TRUE by default. Defines whether NA values should
be removed before result is found. Otherwise result will be NA when any NA is
in a vector.

dims dims=1 is default. Not used. integer: Which dimensions are regarded as ’rows’
or ’columns’ to sum over. For row*, the sum or mean is over dimensions
dims+1, ...; for col* it is over dimensions 1:dims.

Value

Returns a vector of numbers of length equal to number of rows in df.

See Also

wtd.colMeans wtd.rowMeans wtd.rowSums rowMaxs rowMins colMins

Examples

x=data.frame(a=c(NA, 2:10), b=rep(100,10), c=rep(3,10))
w=c(1.1, 2, NA)
cbind(x, wtd.rowMeans(x, w))
cbind(x, wtd.rowSums(x, w))
x=data.frame(a=c(NA, 2:4), b=rep(100,4), c=rep(3,4))
w=c(1.1, 2, NA, 0)
print(cbind(x,w, wtd=w*x))
print(wtd.colMeans(x, w, na.rm=TRUE))
#rbind(cbind(x,w,wtd=w*x), c(wtd.colMeans(x,w,na.rm=TRUE), 'wtd.colMeans', rep(NA,length(w))))

68 wtd.rowSums

x=data.frame(a=c(NA, 2:10), b=rep(100,10), c=rep(3,10))
w=c(1.1, 2, NA, rep(1, 7))
print(cbind(x,w, wtd=w*x))
rbind(cbind(x, w), cbind(wtd.colMeans(x, w, na.rm=TRUE), w='wtd.colMeans'))
print(w*cbind(x,w))

wtd.rowSums Weighted Sum of each Row

Description

Returns weighted sum of each row of a data.frame or matrix, based on specified weights, one weight
per column.

Usage

wtd.rowSums(x, wts = 1, na.rm = TRUE)

Arguments

x Data.frame or matrix, required.

wts Weights, optional, defaults to 1 which is unweighted, numeric vector of length
equal to number of columns

na.rm Logical value, optional, TRUE by default. Defines whether NA values should
be removed before result is found. Otherwise result will be NA when any NA is
in a vector.

Value

Returns a vector of numbers of length equal to number of rows in df.

See Also

wtd.colMeans wtd.rowMeans wtd.rowSums rowMaxs rowMins colMins

Examples

x=data.frame(a=c(NA, 2:10), b=rep(100,10), c=rep(3,10))
w=c(1.1, 2, NA)
cbind(x, wtd.rowMeans(x, w))
cbind(x, wtd.rowSums(x, w))
x=data.frame(a=c(NA, 2:4), b=rep(100,4), c=rep(3,4))
w=c(1.1, 2, NA, 0)
print(cbind(x,w, wtd=w*x))
print(wtd.colMeans(x, w, na.rm=TRUE))
#rbind(cbind(x,w,wtd=w*x), c(wtd.colMeans(x,w,na.rm=TRUE), 'wtd.colMeans', rep(NA,length(w))))

x=data.frame(a=c(NA, 2:10), b=rep(100,10), c=rep(3,10))
w=c(1.1, 2, NA, rep(1, 7))
print(cbind(x,w, wtd=w*x))
rbind(cbind(x, w), cbind(wtd.colMeans(x, w, na.rm=TRUE), w='wtd.colMeans'))
print(w*cbind(x,w))

Index

==, 58, 59

all, 58, 59
all.equal, 58, 59
analyze.stuff, 3
analyze.stuff-package (analyze.stuff), 3
as.vector, 23

calc.fields, 3, 4
change.fieldnames, 3, 5, 5, 46
coef, 29
colMaxs, 3, 6, 7, 9, 48, 50
colMins, 3, 7, 8, 9, 48, 50, 63, 67, 68
cols.above.count, 3, 10, 10, 12, 13, 15, 17,

40, 42, 52–56
cols.above.pct, 3, 7, 9, 10, 11, 12, 13, 15,

17, 40, 42, 48, 50, 52–56
cols.above.which, 7, 9, 10, 12, 12, 13, 15,

17, 40, 42, 48, 50, 52–56
Comparison, 7, 9, 48, 50
count.above, 7, 9, 10, 12, 13, 13, 15, 17, 40,

42, 48, 50–56
count.below, 10, 12, 13, 15, 16, 40, 42, 52–56
count.words, 17
curl_download, 21

data.table, 23, 61–63
dir, 19, 20
dir2, 3, 18, 19, 20
dirdirs, 3, 19, 19, 20
dirr, 3, 19, 20
download.file, 20, 21
download.files, 20

expand.grid, 21, 22
expand.gridMatrix, 21

factor, 23
factor.as.numeric, 7, 9, 22, 48, 50
findArgs, 23
format, 24
formatcomma, 24

geomean, 24, 26, 47
get.os, 25, 36

grep, 23

harmean, 25, 25, 47

identical, 58, 59
install.packages, 27
install_github, 27
installrequired, 26
intersectDiagram, 37
intersperse, 27
isTRUE, 58, 59

lead.zeroes, 28
length2, 3, 28
line, 29
linefit, 29
linesofcode, 30
list.dirs, 19
lm, 29
logposneg, 31
lowess, 29

matrix, 23
matrixStats, 4, 7, 8, 48, 49
max, 7, 9, 48, 50
mean, 25, 26, 47
mem, 3, 31
min, 7, 9, 48, 50
minNonzero, 32, 33, 34

na.check, 3, 33, 33, 34
na.check2, 33, 34, 34
names2, 34
normalized, 35

object.size, 31
os, 25, 36
overlaps, 36

pause, 37
pct.above, 7, 9, 10, 12, 13, 15, 17, 38, 40–42,

48, 50, 52–56
pct.below, 7, 9, 10, 12, 13, 15, 17, 40, 41, 42,

48, 50, 52–56
pctiles, 3, 42, 43–45, 65–67

69

70 INDEX

pctiles.a.over.b, 43, 43, 44, 45, 65–67
pctiles.exact, 43, 44, 44, 45, 65–67
pdf2, 45
put.first, 6, 46

require, 27
rmall, 46
rms, 25, 26, 47
rowMaxs, 3, 7, 9, 47, 48, 50, 63, 67, 68
rowMins, 3, 7, 9, 48, 49, 50, 63, 67, 68
rows.above.count, 3, 10, 12, 13, 15, 17, 40,

42, 51, 53–56
rows.above.pct, 3, 10, 12, 13, 15, 17, 40, 42,

52, 52, 54–56
rows.above.which, 10, 12, 13, 15, 17, 40, 42,

52, 53, 53, 55, 56
rows.below.count, 10, 12, 13, 15, 17, 40, 42,

52–54, 54, 56
rows.below.pct, 10, 12, 13, 15, 17, 40, 42,

52–55, 55

scale, 35
scan, 18
setdiff, 57
setdiff2, 3, 37, 57
setops, 37
signif, 58
signifarray, 57
similar, 58, 59
similar.p, 3, 58, 59
spDists, 4
suppressWarnings, 7, 9, 48, 50
Sys.sleep, 38

tabular, 60
tb, 60

unzip, 61
unzip.files, 61

which, 13, 53
wtd.colMeans, 3, 61, 63, 67, 68
wtd.colMeans2, 61, 63
wtd.pctiles, 3, 43–45, 64, 65–67
wtd.pctiles.exact, 43–45, 65, 65, 66, 67
wtd.pctiles.fast, 43–45, 65, 66, 66, 67
wtd.quantile, 64–66
wtd.rowMeans, 3, 63, 67, 67, 68
wtd.rowSums, 63, 67, 68, 68

	analyze.stuff
	calc.fields
	change.fieldnames
	colMaxs
	colMins
	cols.above.count
	cols.above.pct
	cols.above.which
	count.above
	count.below
	count.words
	dir2
	dirdirs
	dirr
	download.files
	expand.gridMatrix
	factor.as.numeric
	findArgs
	formatcomma
	geomean
	get.os
	harmean
	installrequired
	intersperse
	lead.zeroes
	length2
	linefit
	linesofcode
	logposneg
	mem
	minNonzero
	na.check
	na.check2
	names2
	normalized
	os
	overlaps
	pause
	pct.above
	pct.below
	pctiles
	pctiles.a.over.b
	pctiles.exact
	pdf2
	put.first
	rmall
	rms
	rowMaxs
	rowMins
	rows.above.count
	rows.above.pct
	rows.above.which
	rows.below.count
	rows.below.pct
	setdiff2
	signifarray
	similar
	similar.p
	tabular
	tb
	unzip.files
	wtd.colMeans
	wtd.colMeans2
	wtd.pctiles
	wtd.pctiles.exact
	wtd.pctiles.fast
	wtd.rowMeans
	wtd.rowSums
	Index

