
Package ‘proxistat’
December 27, 2019

Title Create a Proximity Score in Each Census Unit, Based on Distances to
Specified Points

Version 1.0.0

Date 2020-01-01

Description This package has functions helping to calculate distances between
geographic points, such as the distances between all points, distances to
all points within some maximum distance, distance to nearest single point,
etc. It also can create a proximity score for each spatial unit like a Census
block group, to quantify the distance-weighted count of nearby points. This
proximity score can be used in environmental justice (EJ) analysis, for example.
This package uses the sp package for the basic distance calculation.
Key functions include get.nearest() to find the one topoint nearest each frompoint,
get.distances() to find distances quickly within an optional search radius, and
get.distances.all() to find distances from all frompoints to alltopoints. The
function proxistat() creates a proximity score that quantifies, for each spatial
unit like a Census block group, how many topoints are nearby and how close
they are.
For any imported/suggested packages not on CRAN, see http://ejanalysis.github.io

Imports sp,
analyze.stuff,
Hmisc,
data.table

Suggests matrixStats,
UScensus2010blocks

URL http://ejanalysis.github.io, https://github.com/ejanalysis/proxistat, http:
//www.ejanalysis.com/

BugReports https://github.com/ejanalysis/proxistat/issues

Depends R (>= 3.1.0)

RoxygenNote 7.0.2

License MIT + file LICENSE

Repository GitHub

Author info@ejanalysis.com

Maintainer info@ejanalysis.com <info@ejanalysis.com>

NeedsCompilation no

LazyData true

Encoding UTF-8

1

http://ejanalysis.github.io
https://github.com/ejanalysis/proxistat
http://www.ejanalysis.com/
http://www.ejanalysis.com/
https://github.com/ejanalysis/proxistat/issues

2 proxistat-package

R topics documented:
proxistat-package . 2
bg.pts . 4
compile.dbfs . 5
convert . 5
countiesall . 6
countypointmap . 7
deg2rad . 8
deltalon.per.km . 8
gcd . 9
gcd.hf . 10
gcd.slc . 11
get.bg.latlons . 12
get.distances . 13
get.distances.all . 16
get.distances.chunked . 19
get.distances.prepaired . 20
get.nearest . 21
latlon.colnames.check . 23
linesegments . 24
lookup.states . 25
meters.per.degree.lat . 26
meters.per.degree.lon . 27
pointmap . 28
proxistat . 29
proxistat.assemble.chunks . 33
proxistat.chunked . 34
proxistat.rollup . 35
testpoints . 36

Index 38

proxistat-package Find Distances between lat lon Points or Create Proximity Scores.

Description

This package has functions helping to calculate distances between points, such as the distances
between all points, distances to all points within some maximum distance, distance to nearest single
point, etc. It also can create a proximity score for each spatial unit like a Census block group, to
quantify the distance-weighted count of nearby points.

Details

This package has functions helping to calculate distances between geographic points, such as the
distances between all points, distances to all points within some maximum distance, distance to
nearest single point, etc. It also can create a proximity score for each spatial unit like a Census
block group, to quantify the distance-weighted count of nearby points. This proximity score can be
used in environmental justice (EJ) analysis, for example.

This package relies on the sp package for the actual calculation of distance.

proxistat-package 3

A vector of points can be specified using a data.frame of two columns, "lat" and "lon" which specify
latitude and longitude in decimal degrees. It returns the distances from one or more frompoints to
one or more topoints.

Key functions include

• get.nearest to find the one among topoints nearest each frompoints

• get.distances to find distances quickly within an optional search radius

• proxistat to create a proximity score that quantifies, for each spatial unit like a Census block
group, how many topoints are nearby and how close they are

• convert to convert units (miles, km)

Author(s)

info@ejanalysis.com<info@ejanalysis.com>

References

http://ejanalysis.github.io
http://www.ejanalysis.com/
sp package documentation for basic distance function.
Some discussion of this type of proximity indicator is available in the EJSCREEN mapping tool
documentation:
U.S. Environmental Protection Agency (2015). EJSCREEN Technical Documentation. http://
www.epa.gov/ejscreen
http://en.wikipedia.org/wiki/Longitude and http://en.wikipedia.org/wiki/Decimal_
degrees

See Also

sp, US block points dataset: http://ejanalysis.github.io/UScensus2010blocks/, deltalon.per.km,
deltalon.per.km, meters.per.degree.lat, meters.per.degree.lon

Examples

test.from <- structure(list(fromlat = c(38.9567309094, 38.9507043428),
fromlon = c(-77.0896572305, -77.0896199948)),
.Names = c("lat","lon"), row.names = c("6054762", "6054764"), class = "data.frame")

test.to <- structure(list(tolat = c(38.9575019287, 38.9507043428, 38.9514152435),
tolon = c(-77.0892818598, -77.0896199948, -77.0972395245)),
.Names = c("lat","lon"), class = "data.frame", row.names = c("6054762", "6054763", "6054764"))
setseed(999)

t100=testpoints(100)
t10=testpoints(10)
t3=testpoints(3)

get.distances(
test.from[1:2,], test.to[1:3,], radius=0.7, units='km', return.rownums=TRUE, return.latlons=TRUE

)
get.nearest(test.from, test.to)

get.distances(t3, t10, units='km', return.crosstab=TRUE)
get.distances(t3, t10, units='km')

http://ejanalysis.github.io
http://www.ejanalysis.com/
http://www.epa.gov/ejscreen
http://www.epa.gov/ejscreen
http://en.wikipedia.org/wiki/Longitude
http://en.wikipedia.org/wiki/Decimal_degrees
http://en.wikipedia.org/wiki/Decimal_degrees
http://ejanalysis.github.io/UScensus2010blocks/

4 bg.pts

get.distances(t3, t10, radius=300, units='km')
proxistat(t3, t10, radius = 300, units = "km", area = c(100001:100003))
proxistat(t3, t10, radius=300, units='km')
1/get.nearest(t3, t10, radius=300, units='km')

bg.pts Block group internal points and areas (square meters) from Census
Bureau for 2010 geographies

Description

This data set provides a data.frame with 220740 block groups, with 5 variables.

Usage

data('bg.pts')

Format

A data.frame of 220740 block groups, with 5 variables.

• [1,] "FIPS (e.g., ’010950302024’)"

• [2,] "aland numeric, land area in square meters"

• [3,] "awater numeric, water area in square meters"

• [4,] "lat numeric, latitude in decimal degrees"

• [5,] "lon numeric, longitude in decimal degrees"

Source

Derived from Census Bureau, obtained early 2015.

See Also

UScensus2010blocks and acs and the Census 2010 packages http://lakshmi.calit2.uci.edu/
census2000/ and http://www.jstatsoft.org/v37/i06

http://lakshmi.calit2.uci.edu/census2000/
http://lakshmi.calit2.uci.edu/census2000/
http://www.jstatsoft.org/v37/i06

compile.dbfs 5

compile.dbfs Read a series of dbf files and join compile them as a single data.frame

Description

Can help with a series of downloaded Census data files, such as one file per State. Reads each using
read.dbf and combines them all as a data.frame. They must all have the same columns, and each
file just provides additional rows of data.

Usage

compile.dbfs(filepaths)

Arguments

filepaths Required charater vector with full paths including file names of dbf files to be
read.

Value

Returns a data.frame with as many columns as each dbf file, and as many rows as there are in all
the dbf files read in.

See Also

read.dbf

convert Convert units of distance or area

Description

convert converts distance/length or area from specified units to other specified units.

Usage

convert(x, from = "km", towhat = "mi")

Arguments

x A number or vector of numbers to be converted.

from A string specifying original units of input parameter. Default is ’km’ which
is kilometers. Note all must be in the same units. Units can be specified as
any of the following: c(’millimeter’, ’millimeters’, ’centimeter’, ’centimeters’,
’meter’, ’meters’, ’kilometer’, ’kilometers’, "mm", "cm", "m", "km", "sqmm",
"sqcm", "sqm", "sqkm", "mm2", "cm2", "m2", "km2", ’inch’, ’inches’, ’foot’,
’feet’, ’yard’, ’yards’, ’mile’, ’miles’, "in", "ft", "yd", "mi", "sqin", "sqft",
"sqyd", "sqmi", "in2", ’ft2’, ’yd2’, ’mi2’) Note that m2 is for square meters
not square miles.

towhat A strings specifying new units to convert to. Default is ’mi’ which is miles.

6 countiesall

Details

This function takes a number, or vector of numbers, representing distance/length or area in one type
of specified units, such as miles, and returns the corresponding number(s) converted to some other
units, such as kilometers. Units can be specified in various ways. All inputs must be in the same
units. All outputs must be in a single set of units as well.

NOTE: For some purposes, Census Bureau does this: "The ANSI standard for converting square
kilometers into square miles was used (1 square mile = 2.58998811 square kilometers)." (see
https://www.census.gov/geo/reference/state-area.html) but the conversions in this func-
tion use 2.5899881034 not 2.58998811 sqkm/sqmi. The difference is only 6.6 per billion (roughly
1 in 152 million), which is less than one tenth of a square kilometer out the entire USA.

Value

Returns a number or vector of numbers then length of the input x, with each element corresponding
to an input element converted to new units.

See Also

get.distances which allows you to specify a search radius and get distances only within that
radius, and related functions.

Examples

convert(1, 'mi', 'km')
convert(c(1e6, 1), 'sqm', 'sqkm')

countiesall Counties information from U.S. Census Bureau from 2015

Description

This data set provides names and FIPS codes for U.S. Counties and County equivalents.

Format

A data.frame of 3234 U.S. Counties or County equivalents, with 5 variables.

> str(countiesall)
’data.frame’: 3235 obs. of 5 variables:

• $ ST : chr "AL" "AL" "AL" "AL" ...

• $ countyname : chr "Autauga County" "Baldwin County" "Barbour County" "Bibb County"
...

• $ FIPS.COUNTY: chr "01001" "01003" "01005" "01007" ...

• $ statename : chr "Alabama" "Alabama" "Alabama" "Alabama" ...

• $ fullname : chr "Autauga County, Alabama" "Baldwin County, Alabama" "Barbour County,
Alabama" "Bibb County, Alabama" ...

https://www.census.gov/geo/reference/state-area.html

countypointmap 7

> head(countiesall)

ST countyname FIPS.COUNTY statename fullname
1 AL Autauga County 01001 Alabama Autauga County,Alabama
2 AL Baldwin County 01003 Alabama Baldwin County,Alabama
3 AL Barbour County 01005 Alabama Barbour County,Alabama
4 AL Bibb County 01007 Alabama Bibb County,Alabama
5 AL Blount County 01009 Alabama Blount County,Alabama
6 AL Bullock County 01011 Alabama Bullock County,Alabama

Source

Derived from Census Bureau, obtained early 2015.

See Also

get.county.info from the ejanalysis package (http://ejanalysis.github.io/ejanalysis/),
and the UScensus2010county package and the acs package and the Census 2010 packages http:
//lakshmi.calit2.uci.edu/census2000/ and http://www.jstatsoft.org/v37/i06

countypointmap Simple map of color-coded block group centroids in county

Description

very simple mapping

Usage

countypointmap(
query,
vartext,
varname,
breaks = 5,
coloring,
asp = c(1, 1),
pch = 1,
...

)

Arguments

query See get.county.info

vartext required, passed to pointmap.
varname required Name of column in data.frame bg, which must be in memory already.
breaks Default is 5, passed to cut

coloring Default is colors[1:(length(breaks) + 1)] (unless breaks is 1, and then it is col-
ors[1])

asp Default is c(1,1), passed to pointmap.
pch Default is 1, passed to pointmap.
... Additional parameters to pass to pointmap.

http://ejanalysis.github.io/ejanalysis/
http://lakshmi.calit2.uci.edu/census2000/
http://lakshmi.calit2.uci.edu/census2000/
http://www.jstatsoft.org/v37/i06

8 deltalon.per.km

Value

Just draws a map

See Also

pointmap

deg2rad Convert degrees to radians

Description

From http://www.r-bloggers.com/great-circle-distance-calculations-in-r/

Usage

deg2rad(deg)

Arguments

deg Degrees as decimal degrees, required numeric vector

Value

Radians, as numeric vector same length as input

deltalon.per.km Convert kilometers (East-West) to degrees longitude.

Description

deltalon.per.km returns change in decimal degrees longitude per kilometer (East-West), given
latitude (Northern Hemisphere).

Usage

deltalon.per.km(lat)

Arguments

lat The decimal degrees of latitude of the Northern Hemisphere location(s) of inter-
est, as number or vector of numbers.

http://www.r-bloggers.com/great-circle-distance-calculations-in-r/

gcd 9

Details

This function returns the change in decimal degrees longitude per kilometer moving East-West, at
a given latitude (N. Hemisphere). This is an approximation and is less accurate further from the
given latitude. The degrees of longitude per km traveled East-West is larger closer to the poles,
and smallest at the equator. See http://en.wikipedia.org/wiki/Longitude and http://en.
wikipedia.org/wiki/Decimal_degrees Not using meters.per.degree.lon the results would
be roughly (1 / ((pi/180) * 6378.137 * cos(lat * 0.01745329))) where 0.01745329 is pi/180 to con-
vert to radians. see http://en.wikipedia.org/wiki/Decimal_degrees The equator is divided
into 360 degrees of longitude, so each degree at the equator represents 111,319.9 metres or approxi-
mately 111.32 km. As one gets further from the equator, one degree of longitude must be multiplied
by the cosine of the latitude, decreasing distance per degree lon, approaching zero at the pole. For
most northern point of USA http://en.wikipedia.org/wiki/Extreme_points_of_the_United_States,
where one finds maximum degrees lon per mile, latitude is just under 72, and cos of 72 degrees=
cos(72 * pi/180) = 0.309 , so miles/degrees is about 111.32 km * 0.309 = 34.4 km = 21.4 miles
roughly.

Value

Returns decimal degrees longitude per km traveled E-W, as a number or vector of numbers the same
length as the input lat.

See Also

meters.per.degree.lon for the inverse of this function (other than a factor of 1000), and get.distances
which allows you to specify a search radius and get distances only within that radius, and related
functions.

Examples

deltalon.per.km(0)
Roughly 111 km/degree moved East-West at the equator roughly, or around 21 miles.

deltalon.per.km(c(0,45,72))

gcd Distance between two points by Haversine, Spherical Law of Cosines,
or Vincenty inverse formula

Description

Calculates the geodesic distance between two points (or multiple pairs of points) specified by de-
grees (DD) latitude/longitude using Haversine formula (hf), Spherical Law of Cosines (slc) and
Vincenty inverse formula for ellipsoids (vif)
Taken from http://www.r-bloggers.com/great-circle-distance-calculations-in-r/
Note these are not the most accurate method for long distances (e.g., >1000 km) nor the fastest.

Usage

gcd(frompoints, topoints, dfunc = "hf", units = "km")

http://en.wikipedia.org/wiki/Longitude
http://en.wikipedia.org/wiki/Decimal_degrees
http://en.wikipedia.org/wiki/Decimal_degrees
http://en.wikipedia.org/wiki/Decimal_degrees
http://www.r-bloggers.com/great-circle-distance-calculations-in-r/

10 gcd.hf

Arguments

frompoints Required matrix or data.frame of 2 columns, named lat and lon, with latitude
and longitude(s) in degrees, one row per point.

topoints Required matrix or data.frame of 2 columns, named lat and lon, with latitude
and longitude(s) in degrees, one row per point.

dfunc Character string "hf" for Haversine by default, or "slc" for Spherical Law of
Cosines (and may add "vif" for Vincenty inverse formula but that is not imple-
mented here). For "sp" algorithm (sp), see get.distances

units Optional character variable specifying ’km’ or ’miles’, ’km’ by default.

Details

*** frompoints and topoints must have same number of rows, defining all pairs of points. Alterna-
tively can define a single point while topoints defines a series of points, or vice versa. Taken from
http://www.r-bloggers.com/great-circle-distance-calculations-in-r/ but use pmin in-
stead of min to vectorize it to handle at least pairs, and parameters changed to keep lat/lon as a matrix
or data.frame rather than 2 separate vectors.

Value

Distance in kilometers by default, or in miles if units=’miles’

See Also

convert, gcd, get.distances, get.distances.all

gcd.hf Distance based on Haversine formula

Description

Calculates the geodesic distance between two points, or multiple pairs of points, specified by radian
latitude/longitude.

Calculates the geodesic distance between two points (or multiple pairs of points) specified by radian
latitude/longitude.

Usage

gcd.hf(long1, lat1, long2, lat2)

gcd.hf(long1, lat1, long2, lat2)

Arguments

long1 longitude(s) in radians, vector of one or more numbers

lat1 latitude(s) in radians, vector of one or more numbers

long2 longitude(s) in radians, vector of one or more numbers

lat2 latitude(s) in radians, vector of one or more numbers

http://www.r-bloggers.com/great-circle-distance-calculations-in-r/

gcd.slc 11

Details

long1 and lat1 must be same length. long2 and lat1 must be same length. All four must be the
same length, defining pairs of points. Alternatively long1 and lat1 can define a single point while
long2 and lat2 define a series of points, or vice versa. Taken from http://www.r-bloggers.com/
great-circle-distance-calculations-in-r/ but use pmin instead of min to vectorize it to
handle at least pairs.

long1 and lat1 must be same length. long2 and lat1 must be same length. All four must be the
same length, defining pairs of points. Alternatively long1 and lat1 can define a single point while
long2 and lat2 define a series of points, or vice versa. Taken from http://www.r-bloggers.com/
great-circle-distance-calculations-in-r/ but use pmin instead of min to vectorize it to
handle at least pairs.

Value

Distance in kilometers

Distance in kilometers

See Also

convert, gcd, get.distances, get.distances.all

convert, gcd, get.distances, get.distances.all

gcd.slc Distance based on spherical law of cosines

Description

Calculates the geodesic distance between two points (or multiple pairs of points) specified by radian
latitude/longitude.

Usage

gcd.slc(long1, lat1, long2, lat2)

Arguments

long1 longitude(s) in radians, vector of one or more numbers

lat1 latitude(s) in radians, vector of one or more numbers

long2 longitude(s) in radians, vector of one or more numbers

lat2 latitude(s) in radians, vector of one or more numbers

Details

long1 and lat1 must be same length. long2 and lat1 must be same length. All four must be the
same length, defining pairs of points. Alternatively long1 and lat1 can define a single point while
long2 and lat2 define a series of points, or vice versa. Taken from http://www.r-bloggers.com/
great-circle-distance-calculations-in-r/ but use pmin instead of min to vectorize it to
handle at least pairs.

http://www.r-bloggers.com/great-circle-distance-calculations-in-r/
http://www.r-bloggers.com/great-circle-distance-calculations-in-r/
http://www.r-bloggers.com/great-circle-distance-calculations-in-r/
http://www.r-bloggers.com/great-circle-distance-calculations-in-r/
http://www.r-bloggers.com/great-circle-distance-calculations-in-r/
http://www.r-bloggers.com/great-circle-distance-calculations-in-r/

12 get.bg.latlons

Value

Distance in kilometers

See Also

convert, gcd, get.distances, get.distances.all

get.bg.latlons Was used to get block group internal points directly from Census
shapefiles

Description

Download, unzip, read, and assemble lat lon of internal points for US Census block groups.

Usage

get.bg.latlons(
myyear = 2014,
mytempdir,
mystatenums,
overwrite = FALSE,
silent = FALSE

)

Arguments

myyear Year such as 2014 (default)

mytempdir Optional. Default is TIGERTEMP created inside the current working directory.
Character string of path to where temporary directory is or will be, for down-
loaded zip and dbf files.

mystatenums Optional, default is all including PR/VI/DC, etc. Vector of strings of 2-character
FIPS codes for states to get data for.

overwrite Optional, FALSE by default (unlike in unzip), which means if zip file exists
locally do not download and if contents exist do not unzip. BUT note this does
not yet check to see if contents exist and zip does not, in which case could avoid
downloading.

silent Optional logical FALSE by default. If TRUE, print more results.

Details

Note this is obsolete if used to create data() containing the results: bg.pts = get.bg.latlons(mytempdir
= getwd(), overwrite=FALSE, silent = TRUE) save(bg.pts, file=’bg.pts’) # and then this can be
saved in the data folder of a package, then build pkg, then access via data(’bg.pts’)

Examples

#get.bg.latlons(mystatenums=c('09','10'))

get.distances 13

get.distances Find distances between nearby points, within specified radius.

Description

WORK IN PROGRESS. Returns the distances from one set of points to nearby members of another
set of points.

Usage

get.distances(
frompoints,
topoints,
radius = 5200,
units = "miles",
ignore0 = FALSE,
dfunc = "sp",
as.df = FALSE,
return.rownums = TRUE,
return.latlons = FALSE,
return.crosstab = FALSE,
tailored.deltalon = FALSE

)

Arguments

frompoints A matrix or data.frame with two cols, ’lat’ and ’lon’ with datum=WGS84 as-
sumed.

topoints A matrix or data.frame with two cols, ’lat’ and ’lon’ with datum=WGS84 as-
sumed.

radius A single number defining nearby, the maximum distance searched for or recorded.
Default is max allowed... radius must be less than about 8,368 kilometers (5,200
miles, or the distance from Hawaii to Maine)

units A string that is ’miles’ by default, or ’km’ for kilometers, specifying units for
radius and distances returned.

ignore0 A logical, default is FALSE, specifying whether to ignore distances that are
zero and report only nonzero distances. Useful if want distance to points other
than self, where frompoints=topoints, for example. Ignored if return.crosstab =
TRUE.

dfunc Optional character element "hf" or "slc" to specify distance function Haversine
or spherical law of cosines. If "sp" (default), it uses the sp package to find
distances more accurately and more quickly.

as.df Optional logical, default is TRUE

return.rownums Logical value, TRUE by default. If TRUE, value returned also includes two
extra columns: a col of index numbers starting at 1 specifying the frompoint and
a similar col specifying the topoint.

return.latlons Logical value, FALSE by default. If TRUE, value returned also includes four
extra columns, showing fromlat, fromlon, tolat, tolon.

14 get.distances

return.crosstab

Logical value, FALSE by default. If TRUE, value returned is a matrix of the
distances, with a row per frompoint and col per topoint. (Distances larger than
max search radius are not provided, even in this format).

tailored.deltalon

Logical value, FALSE by default, but ignored. Leftover from older get.distances
function. Defined size of initially searched area as function of lat, for each
frompoint, rather than initially searching a conservatively large box.

Details

This function returns a matrix or vector of distances, which are the distances from one set of points
to the nearby members of another set of points. It searches within a circle (of radius = radius, defin-
ing what is considered nearby), to calculate distance (in miles or km) from each of frompoints to
each of topoints that is within the specified radius. Points are specified using latitude and longitude
in decimal degrees.

Uses get.distances.all. Relies on the sp package for the spDists and SpatialPoints func-
tions.

Regarding distance calculation, also see http://en.wikipedia.org/wiki/Vincenty%27s_formulae,
http://williams.best.vwh.net/avform.htm#Dist, http://sourceforge.net/projects/geographiclib/,
and http://www.r-bloggers.com/great-circle-distance-calculations-in-r/.

Finding distance to all of the 11 million census blocks in usa within 5 km, for 100 points, can
take a while. May want to look at js library like turf, or investigate using data.table to index and
more quickly subset the (potentially 11 million Census blocks of) topoints (or pre-index that block
point dataset and allow this function to accept a data.table as input).

Value

By default, returns a dataframe that has 3 columns: fromrow, torow, distance (where fromrow or
torow is the row number of the corresponding input, starting at 1). Distance returned is in miles
by default, but with option to set units=’km’ to get kilometers. See parameters for details on other
formats that may be returned if specified.

See Also

get.distances.all which allows you to get distances between all points, get.distances.prepaired
for finding distances when data are already formatted as pairs of points, get.nearest which finds
the distance to the single nearest point within a specified search radius instead of all topoints, and
proxistat which calculates a proximity score for each spatial unit based on distances to nearby
points.

Examples

#
set.seed(999)
t1=testpoints(1)
t10=testpoints(10)
t100=testpoints(100, minlat = 25, maxlat = 45, minlon = -100, maxlon = -60)
t1k=testpoints(1e3, minlat = 25, maxlat = 45, minlon = -100, maxlon = -60)
t10k=testpoints(1e4)
t100k=testpoints(1e5)

http://en.wikipedia.org/wiki/Vincenty%27s_formulae
http://williams.best.vwh.net/avform.htm#Dist
http://sourceforge.net/projects/geographiclib/
http://www.r-bloggers.com/great-circle-distance-calculations-in-r/

get.distances 15

t1m=testpoints(1e6)
#t10m=testpoints(1e7)

test.from <- structure(list(fromlat = c(38.9567309094, 45),
fromlon = c(-77.0896572305, -100)), .Names = c("lat", "lon"),
row.names = c("1", "2"), class = "data.frame")

test.to <- structure(list(tolat = c(38.9575019287, 38.9507043428, 45),
tolon = c(-77.0892818598, -77.2, -90)),
.Names = c("lat", "lon"), class = "data.frame",
row.names = c("1", "2", "3"))

#*** Can fail if radius=50 miles? ... Error in rbind() numbers of
columns of arguments do not match !
#big = get.distances(t100, t1k, radius=100, units='miles', return.latlons=TRUE, as.df=TRUE)

head(big)
#summary(big$d)

big = get.distances(t100, t1k, radius=100, units='miles', return.latlons=TRUE, as.df=TRUE)
head(big)
summary(big$d)

see as map of many points
plot(big$fromlon, big$fromlat,main='from black circles...

closest is red, others nearby are green ')
points(t1k$lon, t1k$lat, col='blue',pch='.')
points(big$tolon, big$tolat, col='green')
junk=as.data.frame(get.nearest(t100, t1k, return.latlons=TRUE))
points(junk$tolon, junk$tolat, col='red')
Draw lines from frompoint to nearest:
with(junk,linesegments(fromlon, fromlat, tolon, tolat))

more test cases
length(get.distances(t10,t10,radius=4999,ignore0 = TRUE, units='km')$d)
get.distances(t10,t10,radius=4999,ignore0 = TRUE, units='km')

get.distances(test.from[1,],test.to[1,],radius=3000,return.rownums=F,return.latlons=F)
get.distances(test.from[1,],test.to[1,],radius=3000,return.rownums=FALSE,return.latlons=TRUE)
get.distances(test.from[1,],test.to[1,],radius=3000,return.rownums=TRUE,return.latlons=FALSE)
get.distances(test.from[1,],test.to[1,],radius=3000,return.rownums=TRUE,return.latlons=TRUE)

get.distances(test.from[1,],test.to[1:3,],radius=3000,return.rownums=F,return.latlons=F)
get.distances(test.from[1,],test.to[1:3,],radius=3000,return.rownums=FALSE,return.latlons=TRUE)
get.distances(test.from[1,],test.to[1:3,],radius=3000,return.rownums=TRUE,return.latlons=FALSE)
get.distances(test.from[1,],test.to[1:3,],radius=3000,return.rownums=TRUE,return.latlons=TRUE)

get.distances(test.from[1:2,],test.to[1,],radius=3000,return.rownums=F,return.latlons=F)
get.distances(test.from[1:2,],test.to[1,],radius=3000,return.rownums=FALSE,return.latlons=TRUE)
get.distances(test.from[1:2,],test.to[1,],radius=3000,return.rownums=TRUE,return.latlons=FALSE)
get.distances(test.from[1:2,],test.to[1,],radius=3000,return.rownums=TRUE,return.latlons=TRUE)

get.distances(test.from[1:2,],test.to[1:3,],radius=3000,return.rownums=F,return.latlons=F)
get.distances(test.from[1:2,],test.to[1:3,],radius=3000,return.rownums=FALSE,return.latlons=T)
get.distances(test.from[1:2,],test.to[1:3,],radius=3000,return.rownums=TRUE,return.latlons=F)
get.distances(test.from[1:2,],test.to[1:3,],radius=3000,return.rownums=TRUE,return.latlons=TRUE)
get.distances(test.from[1:2,],test.to[1:3,], radius=0.7,return.rownums=TRUE,

return.latlons=TRUE, units='km')
get.distances(test.from[1:2,],test.to[1:3,], radius=0.7,return.rownums=TRUE,

return.latlons=TRUE, units='miles')

16 get.distances.all

Warning messages:
Ignoring return.crosstab because radius was specified

get.distances(test.from[1,],test.to[1:3,], return.crosstab=TRUE)
get.distances(test.from[1:2,],test.to[1,], return.crosstab=TRUE)
get.distances(test.from[1:2,],test.to[1:3,], return.crosstab=TRUE)
get.distances(test.from[1:2,],test.to[1:3,], radius=0.7, return.crosstab=TRUE)

get.distances.all Find all distances between two sets of points (based on lat/lon)

Description

Returns all the distances from one set of geographic points to another set of points. Can return a
matrix of distances (m x n points) or vector or data.frame with one row per pair. Lets you specify
units and whether you need lat/lon etc, but essentially just a wrapper for the sp package for the
spDists and SpatialPoints functions.

Usage

get.distances.all(
frompoints,
topoints,
units = "miles",
return.crosstab = FALSE,
return.rownums = TRUE,
return.latlons = TRUE,
as.df = TRUE

)

Arguments

frompoints A matrix or data.frame with two cols, ’lat’ and ’lon’ with datum=WGS84 as-
sumed.

topoints A matrix or data.frame with two cols, ’lat’ and ’lon’ with datum=WGS84 as-
sumed.

units A string that is ’miles’ by default, or ’km’ for kilometers, specifying units for
distances returned.

return.crosstab

Logical value, FALSE by default. If TRUE, value returned is a matrix of the
distances, with a row per frompoint and col per topoint.

return.rownums Logical value, TRUE by default. If TRUE, value returned also includes two
extra columns: a col of index numbers starting at 1 specifying the frompoint and
a similar col specifying the topoint. If crosstab=TRUE, ignores return.rownums
and return.latlons

return.latlons Logical value, TRUE by default. If TRUE, value returned also includes four ex-
tra columns, showing fromlat, fromlon, tolat, tolon. If crosstab=TRUE, ignores
return.rownums and return.latlons

as.df Logical, default is TRUE, in which case returns a data.frame (unless vector),
otherwise a matrix (unless vector).

get.distances.all 17

Details

*** Probably slower than it needs to be partly by using data.frame instead of matrix class? Roughly
10-20 Just using get.distances.all is reasonably fast? (30-40 seconds for 100 million distances, but
slow working with results so large), Sys.time(); x=get.distances.all(testpoints(1e5), testpoints(1000),
return.crosstab=TRUE); Sys.time()
[1] "2015-03-10 18:59:08 EDT"
[1] "2015-03-10 18:59:31 EDT" 23 SECONDS for 100 million distances IF NO PROCESSING
OTHER THAN CROSSTAB
Sys.time(); x=get.distances.all(testpoints(1e6), testpoints(100), return.crosstab=TRUE); Sys.time()
[1] "2015-03-10 21:54:11 EDT"
[1] "2015-03-10 21:54:34 EDT" 23 SECONDS for 100 million distances (1m x 100, or 100k x
1000)
Sys.time(); x=get.distances.all(testpoints(1e6), testpoints(300), return.crosstab=TRUE); Sys.time()
[1] "2015-03-10 21:56:11 EDT"
[1] "2015-03-10 21:57:18 EDT" 67 seconds for 300 million pairs.
plus 20 seconds or so for x[x>100] <- Inf
#’ so 11m blocks to 1k points could take >40 minutes! (you would want to more quickly remove
the ones outside some radius)
>3 minutes per 100 sites?
About 2.6 seconds per site for 11m blocks?

> Sys.time(); x=get.distances.all(testpoints(1e5), testpoints(1000), units=’miles’,return.rownums=TRUE);
Sys.time()
[1] "2015-03-09 21:23:04 EDT"
[1] "2015-03-09 21:23:40 EDT" 36 SECONDS IF DATA.FRAME ETC. DONE TO FORMAT RE-
SULTS AND GET ROWNUMS
> Sys.time(); x=get.distances.all(testpoints(1e5), testpoints(1000), units=’miles’,return.rownums=TRUE)$d;
Sys.time()
[1] "2015-03-09 21:18:47 EDT"
[1] "2015-03-09 21:19:26 EDT" 49 SECONDS IF DATA.FRAME ETC. DONE TO FORMAT RE-
SULTS AND GET ROWNUMS IN get.distances.all

Value

By default, returns a dataframe that has 3 columns: fromrow, torow, distance (where fromrow or
torow is the row number of the corresponding input, starting at 1). If return.crosstab=FALSE, which
is default, and return.rownums and/or return.latlons is TRUE, returns a row per from-to pair, and
columns depending on parameters, sorted first cycling through all topoints for first frompoint, and
so on. If return.crosstab=FALSE and return.rownums and return.latlons are FALSE, returns a vector
of distances in same order as rows described above. If return.crosstab=TRUE, returns a matrix of
distances, with one row per frompoint and one column per topoint.

See Also

get.distances which allows you to specify a search radius and get distances only within that
radius which can be faster, get.distances.prepaired for finding distances when data are already
formatted as pairs of points, get.nearest which finds the distance to the single nearest point within
a specified search radius instead of all topoints, and proxistat which calculates a proximity score
for each spatial unit based on distances to nearby points.

18 get.distances.all

Examples

set.seed(999)
t1=testpoints(1)
t10=testpoints(10)
t100=testpoints(100, minlat=25,maxlat=48)
t1k=testpoints(1e3)
t10k=testpoints(1e4)
t100k=testpoints(1e5)
t1m=testpoints(1e6)
#t10m=testpoints(1e7)

get.distances.all(t1, t1)
get.distances.all(t1, t10[2, ,drop=FALSE])
x=get.distances.all(t10, t100[1:20 ,], units='km')
plot(x$tolon, x$tolat,pch='.')
points(x$fromlon, x$fromlat)
with(x, linesegments(fromlon, fromlat, tolon, tolat))
with(x[x$d<500,], linesegments(fromlon, fromlat, tolon, tolat ,col='red'))

x=get.distances.all(t10, t1k); head(x);summary(x$d)
x=get.distances.all(t10, t1k, units='km'); head(x);summary(x$d)
x=get.distances.all(t10, t1k, units='km'); head(x);summary(x$d)

Not run:
require(UScensus2010blocks)
blocks <- get.blocks(fields=c('fips','lat','lon'),charfips = FALSE)

End(Not run)

test.from <- structure(list(fromlat = c(38.9567309094, 45),
fromlon = c(-77.0896572305, -100)), .Names = c("lat", "lon"),
row.names = c("1", "2"), class = "data.frame")

test.to <- structure(list(tolat = c(38.9575019287, 38.9507043428, 45),
tolon = c(-77.0892818598, -77.2, -90)),
.Names = c("lat", "lon"), class = "data.frame",
row.names = c("1", "2", "3"))

get.distances.all(test.from, test.to)
get.distances.all(test.from, test.to, return.crosstab=TRUE)
get.distances.all(test.from, test.to, return.rownums=FALSE)
get.distances.all(test.from, test.to, return.latlons=FALSE)
get.distances.all(test.from, test.to, return.latlons=FALSE, return.rownums=FALSE)

test cases

get.distances.all(test.from[1,],test.to[1,],return.rownums=F,return.latlons=F)
get.distances.all(test.from[1,],test.to[1,],return.rownums=FALSE,return.latlons=TRUE)
get.distances.all(test.from[1,],test.to[1,],return.rownums=TRUE,return.latlons=FALSE)
get.distances.all(test.from[1,],test.to[1,],return.rownums=TRUE,return.latlons=TRUE)

get.distances.all(test.from[1,],test.to[1:3,],return.rownums=F,return.latlons=F)
get.distances.all(test.from[1,],test.to[1:3,],return.rownums=FALSE,return.latlons=TRUE)
get.distances.all(test.from[1,],test.to[1:3,],return.rownums=TRUE,return.latlons=FALSE)
get.distances.all(test.from[1,],test.to[1:3,],return.rownums=TRUE,return.latlons=TRUE)

get.distances.chunked 19

get.distances.all(test.from[1:2,],test.to[1,],return.rownums=F,return.latlons=F)
get.distances.all(test.from[1:2,],test.to[1,],return.rownums=FALSE,return.latlons=TRUE)
get.distances.all(test.from[1:2,],test.to[1,],return.rownums=TRUE,return.latlons=FALSE)
get.distances.all(test.from[1:2,],test.to[1,],return.rownums=TRUE,return.latlons=TRUE)

round(get.distances.all(test.from[1:2,],test.to[1:3,],return.rownums=F,return.latlons=F),1)
get.distances.all(test.from[1:2,],test.to[1:3,],return.rownums=FALSE,return.latlons=T)
get.distances.all(test.from[1:2,],test.to[1:3,],return.rownums=TRUE,return.latlons=F)
get.distances.all(test.from[1:2,],test.to[1:3,],return.rownums=TRUE,return.latlons=TRUE)
get.distances.all(test.from[1:2,],test.to[1:3,], return.rownums=TRUE,

return.latlons=TRUE, units='km')
get.distances.all(test.from[1:2,],test.to[1:3,], return.rownums=TRUE,

return.latlons=TRUE, units='miles')

get.distances.all(test.from[1,],test.to[1:3,], return.crosstab=TRUE)
get.distances.all(test.from[1:2,],test.to[1,], return.crosstab=TRUE)
round(get.distances.all(test.from[1:2,],test.to[1:3,],return.crosstab=TRUE, units='miles'),2)
round(get.distances.all(test.from[1:2,],test.to[1:3,],return.crosstab=TRUE, units='km'),2)

get.distances.chunked Call a function once per chunk & save output as file (breaks large
input data into chunks)

Description

Call get.distances function in chunks, when list of frompoints is so long it taxes RAM (e.g. 11m
blocks), saving each chunk as a separate .RData file in current working directory

Usage

get.distances.chunked(
frompoints,
topoints,
fromchunksize,
tochunksize,
FUN = get.distances,
folder = getwd(),
...

)

Arguments

frompoints Require matrix or data.frame of lat/lon vauels that can be passed to get.distances
function (colnames ’lat’ and ’lon’)

topoints Require matrix or data.frame of lat/lon vauels that can be passed to get.distances
function (colnames ’lat’ and ’lon’)

fromchunksize Required, number specifying how many points to analyze at a time (per chunk).
tochunksize (not yet implemented - current default is to use all topoints at once) number

specifying how many points to analyze at a time (per chunk).
FUN Optional function, get.distances by default, no other value allowed currently.
folder Optional path specifying where to save .RData files, default is getwd()
... Other parameters to pass to get.distances, such as radius or units

20 get.distances.prepaired

Details

filesizes if crosstab format (FASTEST & avoid needing rownums which take >twice as long &
1.25x sized file):
80MB file/chunk if 1k blocks x 11k topoints/chunk:
y=get.distances.chunked(testpoints(11e6), testpoints(11000), 1e3, units=’km’,return.crosstab=TRUE)
800MB file/chunk if 10k blocks x 11k topoints/chunk:
y=get.distances.chunked(testpoints(11e6), testpoints(11000), 1e4, units=’km’,return.crosstab=TRUE)

Value

Returns vector of character elements that are filenames for saved .RData output files in current
working directory or specified folder.

See Also

ff and others related to parallelization, etc.

get.distances.prepaired

Find distances between points, for pairs of points already organized
as pairs.

Description

get.distances.prepaired returns all the distances between each specified pair of points.

Usage

get.distances.prepaired(pts)

Arguments

pts A matrix or data.frame that has columns names ’fromlon’, ’fromlat’, ’tolon’,
’tolat’ with datum=WGS84 assumed.

Details

May need to fix cases where only a single row is input. This function returns a matrix or vector
of distances, between points specified as pairs of lat/lon values. Points are specified using latitude
and longitude in decimal degrees. Relies on the sp package for the spDists and SpatialPoints
functions.

Value

Returns a vector of distances as numbers, in kilometers. Each element corresponds to one row in
pts.

get.nearest 21

See Also

get.distances.all for a useful general function, get.distances for get.distances() which al-
lows you to specify a search radius and get distances only within that radius which can be faster,
get.nearest which finds the distance to the single nearest point within a specified search radius
instead of all topoints, and proxistat which calculates a proximity score for each spatial unit based
on distances to nearby points.

Examples

test.from <- structure(list(fromlat = c(38.9567309094, 38.9507043428, 38.0),
fromlon = c(-77.0896572305, -77.0896199948, -77.0)),
.Names = c("lat", "lon"), row.names = c("one", "two", "three"), class = "data.frame")

test.to <- structure(list(tolat = c(38.9575019287, 38.9507043428, 38.9514152435),
tolon = c(-77.0892818598, -77.0896199948, -77.0972395245)),
.Names = c("lat", "lon"), class = "data.frame", row.names = c("a", "b", "c"))

get.distances.prepaired(data.frame(
fromlat=test.from$lat, fromlon=test.from$lon, tolat=test.to$lat, tolon=test.to$lon)

)

get.nearest Find distance from each point in a set to the nearest of a second set of
points (by lat/lon).

Description

get.nearest returns the distance from each point in a set to the nearest of a second set of points
(by lat/lon).

Usage

get.nearest(
frompoints,
topoints,
units = "miles",
ignore0 = FALSE,
return.rownums = FALSE,
return.latlons = FALSE,
radius = Inf

)

Arguments

frompoints A matrix or data.frame with two cols, ’lat’ and ’lon’ (or only 2 cols that are lat
and lon in that order) with datum=WGS84 assumed.

topoints A matrix or data.frame with two cols, ’lat’ and ’lon’ (or only 2 cols that are lat
and lon in that order) with datum=WGS84 assumed.

units A string that is ’miles’ by default, or ’km’ for kilometers, specifying units for
distances returned.

ignore0 A logical, default is FALSE, specifying whether to ignore distances that are zero
and report only the minimum nonzero distance. Useful if nearest point other
than self, where frompoints=topoints, for example.

22 get.nearest

return.rownums Logical value, TRUE by default. If TRUE, value returned also includes these
2 columns: a col named fromrow of index numbers starting at 1 specifying the
frompoint and a similar col named n specifying the row of the nearest topoint.

return.latlons Logical value, FALSE by default. If TRUE, value returned also includes four
extra columns, showing fromlat, fromlon, tolat, tolon.

radius Optional number, default is Inf. Distance within which search should be limited,
or max distance that will be returned.

Details

This function returns a vector of distances, which are the distances from one set of points to the
nearest single member (if any) of another set of points. Points are specified using latitude and lon-
gitude in decimal degrees. Relies on the sp package for the spDists and SpatialPoints functions.

A future version may use get.distances.all() but for performance only use it for distance pairs (pairs
of points) that have been initially quickly filtered using lat/lon to be not too far, in an attempt to go
much faster in an initial pass. *** old get.nearest with loops takes 42 seconds vs 3 seconds for this
version, for 100k frompoints and 100 topoints: Sys.time(); x=get.nearest(t100k, t100); Sys.time()
> Sys.time(); x=get.nearest(testpoints(1e6), testpoints(100)); Sys.time()
[1] 14:33:05 EDT
[1] 14:33:33 EDT <30 seconds from 1 mill to 100 points, as in finding nearest of 100 sites for 9
But R hung/crashed on 11mill frompoints – Probably out of memory. *** Need to break it up into
batches of maybe 1 to 100 million distances at a time? There are 11,078,297 blocks according to
http://www.census.gov/geo/maps-data/data/tallies/national_geo_tallies.html

Value

By default, returns a vector of distances, but can return a matrix of numbers, with columns that
can include fromrow and torow indexing which is nearest (first if >1 match) of topoints, fromlat,
fromlon, tolat, tolon, and d (distance). ** Returns Inf when no topoints are found within the radius,
and also when a distance to nearest is zero but ignore0=TRUE. Distance returned is in miles by
default, but with option to set units=’km’ to get kilometers. See parameters for details on other
formats that may be returned if specified.

See Also

get.distances which gets distances between all points (within an optional search radius), get.distances.all
which allows you to get distances between all points, get.distances.prepaired for finding dis-
tances when data are already formatted as pairs of points, and proxistat which calculates a prox-
imity score for each spatial unit based on distances to nearby points.

Examples

set.seed(999)
t1=testpoints(1)
t10=testpoints(10)
t100=testpoints(100)
t1k=testpoints(1e3)
t10k=testpoints(1e4)
t100k=testpoints(1e5)
t1m=testpoints(1e6)
#t10m=testpoints(1e7)

http://www.census.gov/geo/maps-data/data/tallies/national_geo_tallies.html

latlon.colnames.check 23

get.nearest(t1, t1)
get.nearest(t1, t10[2, ,drop=FALSE])
get.nearest(t10, t1k)
get.nearest(t10, t1k, radius=500, units='km')
get.nearest(t10, t1k, radius=10, units='km')

test.from <- structure(list(fromlat = c(38.9567309094, 38.9507043428),
fromlon = c(-77.0896572305, -77.0896199948)), .Names = c("lat", "lon"),
row.names = c("6054762", "6054764"), class = "data.frame")

test.to <- structure(list(tolat = c(38.9575019287, 38.9507043428, 38.9514152435),
tolon = c(-77.0892818598, -77.0896199948, -77.0972395245)), .Names = c("lat", "lon"),
class = "data.frame", row.names = c("6054762", "6054763", "6054764"))

get.nearest(test.from, test.to)
get.nearest(testpoints(10), testpoints(30))

latlon.colnames.check Utility function to check for valid lat/lon columns

Description

Used by functions like get.distances to check input parameters frompoints and topoints

Usage

latlon.colnames.check(mypoints)

Arguments

mypoints A matrix or data.frame

Value

Returns a vector of colnames such as c(’lat’, ’lon’) or stops if problem found

See Also

get.distances.all which allows you to get distances between all points, get.distances.prepaired
for finding distances when data are already formatted as pairs of points, get.nearest which finds
the distance to the single nearest point within a specified search radius instead of all topoints, and
proxistat which calculates a proximity score for each spatial unit based on distances to nearby
points.

get.distances which allows you to specify a search radius and get distances only within that
radius which can be faster, get.distances.prepaired for finding distances when data are already
formatted as pairs of points, get.nearest which finds the distance to the single nearest point within
a specified search radius instead of all topoints, and proxistat which calculates a proximity score
for each spatial unit

Examples

#

24 linesegments

linesegments Add line segments connecting pairs of points, to a plot

Description

Accepts vectors of x and y values of pairs of points (e.g., longitude and latitude), reformats them
and adds line segments to an existing plot. Each line segment drawn connects one point its paired
point. The two sets of points have to be equal in length, set up as pairs.

Usage

linesegments(xfrom, yfrom, xto, yto, ...)

Arguments

xfrom required numeric vector of x values for starting points

yfrom required numeric vector of y values for starting points

xto required numeric vector of x values for ending points

yto required numeric vector of y values for ending points

... optional additional parameters to pass to lines

Details

This function also silently returns a matrix of two columns. Each column is a vector that has
elements sequenced in groups of three – the from point, then the to point, then NA to signify a
break in line drawing. See lines

Value

Draws lines(), one line segment from each starting point to its corresponding ending point.

See Also

testpoints and get.nearest

Examples

t10 <- testpoints(10, minlat = 25, maxlat = 45, minlon = -100, maxlon = -60)
t100 <- testpoints(100, minlat = 25, maxlat = 45, minlon = -100, maxlon = -60)
nears=as.data.frame(get.nearest(t10, t100, return.latlons=TRUE))
plot(t10)
plot(t100, pch='.')
linesegments(nears$fromlon, nears$fromlat, nears$tolon, nears$tolat)

lookup.states 25

lookup.states States and related areas dataset

Description

This data set provides a variety of fields for US States, DC, PR, and Island Areas, including FIPS
codes and area in square miles or square kilometers, for example, from the Census Bureau.

Format

A data.frame with 58 rows (States etc.) and 26 columns (variables like statename). See get.state.info
for more details.

• [1,] "statename"

• [2,] "FIPS.ST"

• [3,] "ST"

• [4,] "ftpname"

• [5,] "REGION"

• [6,] "is.usa.plus.pr"

• [7,] "is.usa"

• [8,] "is.state"

• [9,] "is.contiguous.us"

• [10,] "is.island.areas"

• [11,] "area.sqmi"

• [12,] "area.sqkm"

• [13,] "landarea.sqmi"

• [14,] "landarea.sqkm"

• [15,] "waterarea.sqmi"

• [16,] "waterarea.sqkm"

• [17,] "inland.sqmi"

• [18,] "inland.sqkm"

• [19,] "coastal.sqmi"

• [20,] "coastal.sqkm"

• [21,] "greatlakes.sqmi"

• [22,] "greatlakes.sqkm"

• [23,] "territorial.sqmi"

• [24,] "territorial.sqkm"

• [25,] "lat"

• [26,] "lon"

26 meters.per.degree.lat

Details

For information on FIPS codes, see http://www.census.gov/geo/reference/ansi.html, and
also see https://www.census.gov/geo/reference/geoidentifiers.html

Regarding Island Areas see http://www.census.gov/geo/reference/gtc/gtc_island.html which
states the following: Separate from the Island Areas is the term "U.S. Minor Outlying Islands." The
Island Areas of the United States are American Samoa, Guam, the Commonwealth of the Northern
Mariana Islands (Northern Mariana Islands), and the United States Virgin Islands. The U.S. Minor
Outlying Islands refers to certain small islands under U.S. jurisdiction in the Caribbean and Pa-
cific: Baker Island, Howland Island, Jarvis Island, Johnston Atoll, Kingman Reef, Midway Islands,
Navassa Island, Palmyra Atoll, and Wake Island. These areas usually are not part of standard data
products.

Source

Derived from https://www.census.gov/geo/reference/state-area.html (for area data in square
miles etc.) obtained 4/2015, and FIPS codes from Census Bureau.

See Also

get.state.info in ejanalysis package (http://ejanalysis.github.io/ejanalysis/), and state.abb
via data(state) and the Census 2010 packages http://lakshmi.calit2.uci.edu/census2000/
and http://www.jstatsoft.org/v37/i06

meters.per.degree.lat Convert degrees latitude to meters North-South.

Description

meters.per.degree.lat returns meters traveled North-South per decimal degrees latitude, given
latitude (Northern Hemisphere).

Usage

meters.per.degree.lat(theta)

Arguments

theta The decimal degrees of latitude of the Northern Hemisphere location(s) of inter-
est, as number or vector of numbers.

Details

This function returns the meters traveled North-South per decimal degree latitude, at a given lat-
itude (Northern Hemisphere). This is an approximation and is less accurate further from the
given latitude. Based on http://en.wikipedia.org/wiki/Latitude#Length_of_a_degree_
of_latitude and
http://en.wikipedia.org/wiki/Longitude#Length_of_a_degree_of_longitude
Input theta is latitude on WGS84.
Also see http://en.wikipedia.org/wiki/Longitude and http://en.wikipedia.org/wiki/
Decimal_degrees

http://www.census.gov/geo/reference/ansi.html
https://www.census.gov/geo/reference/geoidentifiers.html
http://www.census.gov/geo/reference/gtc/gtc_island.html
https://www.census.gov/geo/reference/state-area.html
http://ejanalysis.github.io/ejanalysis/
http://lakshmi.calit2.uci.edu/census2000/
http://www.jstatsoft.org/v37/i06
http://en.wikipedia.org/wiki/Latitude#Length_of_a_degree_of_latitude
http://en.wikipedia.org/wiki/Latitude#Length_of_a_degree_of_latitude
http://en.wikipedia.org/wiki/Longitude#Length_of_a_degree_of_longitude
http://en.wikipedia.org/wiki/Longitude
http://en.wikipedia.org/wiki/Decimal_degrees
http://en.wikipedia.org/wiki/Decimal_degrees

meters.per.degree.lon 27

Value

Returns meters traveled N-S, as a number or vector of numbers the same length as the input.

See Also

meters.per.degree.lon for a similar function but for travel East-West, with more detailed ex-
planation/help, and get.distances.all and get.distances for distances between points, and
related functions.

Examples

meters.per.degree.lat(32)
meters.per.degree.lat(c(0,45,72))

meters.per.degree.lon Convert degrees longitude to meters East-West.

Description

meters.per.degree.lon returns meters traveled East-West per decimal degree longitude, given
latitude (Northern Hemisphere).

Usage

meters.per.degree.lon(theta)

Arguments

theta The decimal degrees of latitude of the Northern Hemisphere location(s) of inter-
est, as number or vector of numbers.

Details

This function returns the meters traveled East-West per decimal degree longitude, at a given lat-
itude (Northern Hemisphere). This is an approximation and is less accurate further from the
given latitude. Based on http://en.wikipedia.org/wiki/Latitude#Length_of_a_degree_
of_latitude and
http://en.wikipedia.org/wiki/Longitude#Length_of_a_degree_of_longitude

Input theta is latitude on WGS84. Function is as follows:
theta.r <- 0.01745329 * theta
ecc2 <- 0.00669438
return(20037508 * cos(theta.r) / (180 * sqrt(1- ecc2 * (sin(theta.r))^2)))
Based on the following calculations:
The equatorial.radius used is 6378137.0 in meters
2 pi / 360 = 0.01745329
for the WGS84 ellipsoid with a = 6,378,137.0 m and b = 6,356,752.3142 m.
equatorial.radius <- 6378137.0 # a in meters
b=6356752.3142
ecc2 <- (equatorial.radius^2 - b^2)/equatorial.radius^2
ecc2 <- (6378137.0^2 - 6356752.3142^2) / 6378137.0^2

http://en.wikipedia.org/wiki/Latitude#Length_of_a_degree_of_latitude
http://en.wikipedia.org/wiki/Latitude#Length_of_a_degree_of_latitude
http://en.wikipedia.org/wiki/Longitude#Length_of_a_degree_of_longitude

28 pointmap

pi * equatorial.radius = 20037508

Also see http://en.wikipedia.org/wiki/Longitude and http://en.wikipedia.org/wiki/
Decimal_degrees

Value

Returns meters traveled East-West per decimal degree longitude, as a number or vector of numbers
the same length as the input.

See Also

meters.per.degree.lat for a similar function but for travel North-South, and deltalon.per.km
for the inverse of this function (other than a factor of 1000), and get.distances.all and also
get.distances to get distances between points, and related functions.

Examples

meters.per.degree.lon(32)
meters.per.degree.lon(c(0,45,72))

pointmap Read a series of dbf files and join compile them as a single data.frame

Description

Can help with a series of downloaded Census data files, such as one file per State. Reads each using
read.dbf and combines them all as a data.frame. They must all have the same columns, and each
file just provides additional rows of data.

Usage

pointmap(
bin,
lat,
lon,
vartext = "x",
areatext = "area",
coloring = rainbow(length(unique(bin))),
asp = c(1, 1),
pch = ".",
...

)

Arguments

bin Indicates color of each point. A vector of integers used to index the coloring vec-
tor. That would ideally include just 1:n where n is the n number of unique values
and the index to the coloring vector, so each unique value 1:5, for example, is
assigned a map color that is coloring[bin]

lat vector of latitudes just interpreted as y values to plot

http://en.wikipedia.org/wiki/Longitude
http://en.wikipedia.org/wiki/Decimal_degrees
http://en.wikipedia.org/wiki/Decimal_degrees

proxistat 29

lon vector of longitudes just interpreted as x values to plot

vartext default is ’x’, text to use in describing the field mapped

areatext default is ’area’, text to use in describing the area mapped

coloring default is some basic colors from rainbow(). A vector specifying color for each
bin (should be same length as number of unique bin values)

asp default is c(1,1), aspect ratio of graphic (not right for AK, e.g.)

pch default is ’.’, see par – defines type of marker for each point

... other params to send to plot

Value

Draws a map

See Also

countypointmap

Examples

myfips <- bg.pts$FIPS[substr(bg.pts$FIPS,1,2)=='06'] # CA
pointmap(bin = floor(runif(n = length(myfips),1,5.99)), lat = bg.pts$lat[match(myfips, bg.pts$FIPS)], lon = bg.pts$lon[match(myfips, bg.pts$FIPS)], vartext = 'Example', areatext = 'all of CA',coloring = c('gray', 'light blue', 'dark blue', 'orange', 'red') , pch=1, cex=0.3)

proxistat Proximity Statistic for Each Location and Nearby Points

Description

Calculate proximity statistic for each location, quantifying number of and proximities of nearby
points. proxistat returns a proximity statistic (score) for each location (e.g., Census block).

Usage

proxistat(
frompoints,
topoints,
area = 0,
radius = 5,
units = "km",
decay = "1/d",
wts,
return.count = FALSE,
return.nearest = FALSE,
FIPS,
pop,
testing = FALSE,
dfunc = "sp"

)

30 proxistat

Arguments

frompoints Locations of internal points of Census subunits. A matrix or data.frame with two
cols, ’lat’ and ’lon’ with datum=WGS84 assumed. Decimal degrees. Required.

topoints Locations of nearby points of interest, proximity to which is the basis of each
Census unit’s score. A matrix or data.frame with two cols, ’lat’ and ’lon’ with
datum=WGS84 assumed. Decimal degrees. Required.

area A number or vector of numbers giving size of each spatial unit with FIPS.pop, in
square miles or square kilometers depending on the units parameter. Optional.
Default is 0, in which case no adjustment is made for small or even zero distance,
which can cause unrealistically large or even infinite/undefined scores. For zero
distance if area=0, Inf will be returned for the score.

radius NOTE: This default is not the same as the default in get.distances! Optional,
a number giving distance defining nearby, i.e. the search radius, in km or miles
depending on the codeunits parameter. Default is 5 (km if units=’km’). Max is
5200 miles (roughly the distance from Hawaii to Maine).

units A string that is ’miles’ or ’km’ for kilometers (default is ’km’), specifying units
for distances returned and for radius input.

decay A string specifying type of function to use when weighting by distance. The
Default is ’1/d’ For ’1/d’ decay weighting (default), score is count of points
within radius, divided by harmonic mean of distances (when count>0). Decay
weighting also can be ’1/d^2’ or ’1/1’ to represent decay by inverse of squared
distance, or no decay (equal weighting for all points).

wts Optional vector of numbers same length as number of topoints. If wts is speci-
fied, the score for each of the frompoints will be the weighted sum of influences
of topoints. For example, if decay=’1/d’ (default), proximity score = sum(wts/d)
for all the topoints nearby. If decay=’1/1’, proximity score = sum(wts) for all
the topoints nearby.

return.count Optional, logical, defaults to FALSE, specifies if results returned should include
a column with the count of topoints that were within radius, for each of the
frompoints

return.nearest Optional, logical, defaults to FALSE, specifies if results returned should include
a column with the distance to the nearest single of the topoints, for each of the
frompoints

FIPS NOT USED CURRENTLY - COULD BE USED LATER TO AGGREGATE
(rollup) TO BLOCK GROUPS FROM BLOCKS, FOR EXAMPLE. A vector of
strings designating places that will be assigned scores where each is the Census
FIPS code or other ID. Optional. Might want to have this be a factor not string
to be faster, or ensure it is indexed on fips, or have separate FIPS.BG passed to
this function.

pop NOT USED CURRENTLY - COULD BE USED LATER TO AGGREGATE
(rollup) TO BLOCK GROUPS FROM BLOCKS, FOR EXAMPLE. A number
or vector of numbers giving population count of each spatial unit. Default is 1,
which would give the unweighted average.

testing Logical during work in progress

dfunc Optional character element hf or slc to specify distance function Haversine or
spherical law of cosines. If sp (default, fastest), it uses the sp package to find
distances more accurately and more quickly.

proxistat 31

Details

This uses get.distances with return.crosstab=TRUE. This function returns a vector of proximity
scores, one for each location such as a Census block. For example, the proximity score may be
used to represent how many hazardous waste sites are near any given neighborhood and how close
they are. A proximity score quantifies the proximity and count of nearby points using a specified
formula.
Proximity Score = distance-weighted count of points nearby (within search radius) (or with another
optional weight for each topoint)
(or weighted distance to nearest single point if there are none within the radius).
This is the sum of 1/d or 1/d^2 or 1/1, depending on the decay weighting, (or with another optional
weight for each topoint instead of the number 1) where d is the distance from census unit’s internal
point to user-defined point. The default proximity score, using 1/d, is the count of nearby points
divided by the harmonic mean of their distances (n/harmean), (but adjusted when distance is very
small, and using the nearest single one if none are nearby). This is the same as the sum of inverse
distances. The harmonic mean distance (see harmean) is the inverse of the arithmetic mean of the
inverses, or n / (sum of inverses).

Nearby is defined as a user-specified parameter, so only points within the specified distance are
counted, except if none are nearby, the single nearest point (at any distance) is used.

Default relies on the sp package for the spDists and SpatialPoints functions. Other values
of dfunc parameter are slower.

IMPORTANT:

To create a proximity score for a block group, one can find the score for each block in the block
group and then find the population-weighted average of those block scores, for a single block group.
FIPS for blocks can be used to find FIPS for block groups. FIPS for block groups can be used to
find FIPS for tracts.

ADJUSTMENT FOR SMALL DISTANCES:

The adjustment for small distances ensure that each distance represents roughly the distance to
the average resident within a spatial unit like a block, rather than just the distance to the center or
internal point. The adjustment uses the area of the spatial unit and assumes residents are evenly
spread across the unit. Distance is adjusted in each place if area of each spatial unit is specified, to
ensure it represents roughly distance to average resident in the unit: The distance is capped to be no
less than 0.9 x radius of a circle of area equal to census unit’s area. This approximation treats unit
as if it were a circle and assumes pop is evenly distributed within that circle’s area, since
0.9r = 0.9 x sqrt(area/pi) = approx solution to dist from avg point (resident) in circle to a ran-
dom point in the circle (facility or point of interest). The use of a minimum distance per areal
unit is intended to help approximate the distance from the average resident rather than from the
internal point or center of the areal unit. The approximation assumes distance to the average res-
ident can be estimated as if homes and facilities were on average uniformly distributed within
blocks (or whatever units are used) that were roughly circular on average. It relies on the fact
that the average distance between two random points in a circle of radius R is 90 percent of R
(Weisstein, Eric W. Disk Line Picking. From MathWorld–A Wolfram Web Resource. http:
//mathworld.wolfram.com/DiskLinePicking.html). This means that if a population is ran-
domly spread over a roughly circular block, a facility inside the block (i.e., very close to the internal
point) typically would be 0.9R from the average person. The same math shows that the average
point in the circle is 0.67R from the center, and 1.13R from the edge of the circle. We can describe
this relationship using an equation that is a portion of the formula for the distance between two

http://mathworld.wolfram.com/DiskLinePicking.html
http://mathworld.wolfram.com/DiskLinePicking.html

32 proxistat

random points in a circle of radius = 1. The formula uses b = the distance of the facility from the
center as a fraction of the radius, and the integral over a represents distances of residences from
the center. We can solve the equation using http://WolframAlpha.com, for b = 0, 0.5, or 1, rep-
resenting points at the center, halfway to the edge, and at the edge of the circle. For example, we
can use this equation for b = 0.5 to find that the average person, if randomly located in a circle of
radius R, is a distance of about 0.8 R from a facility that is halfway between the center and edge of
the circle. Note this is not the same as the expected location of a randomly placed facility, which
would use b = sqrt(0.5) instead and gives a distance of about 0.9R. The following would be used as
the input to WolframAlpha to derive the 0.9 approximation: Integrate((1/Pi) Sqrt(a + (Sqrt(0.5))^2
- 2(Sqrt(0.5)) Sqrt(a) cos(t)), a, 0, 1, t, 0, pi) http://bit.ly/1GJ9UID

Value

By default, returns a vector of numbers, the proximity scores, one for each of the frompoints (or if
testing, a matrix with 2 columns: fromrow and d for distance). Based on miles by default, or km
depending on units. Returns +Inf for a unit if that area’s area and distance are both zero.

See Also

get.distances and get.distances.all for distances between points, and get.nearest which
finds the distance to the single nearest point within a specified search radius instead of all topoints.

Examples

test.from <- structure(list(fromlat = c(38.9567309094, 38.9507043428),
fromlon = c(-77.0896572305, -77.0896199948)), .Names = c("lat", "lon"),
row.names = c("6054762", "6054764"), class = "data.frame")

test.to <- structure(list(tolat = c(38.9575019287, 38.9507043428, 38.9514152435),
tolon = c(-77.0892818598, -77.0896199948, -77.0972395245)), .Names = c("lat", "lon"),
class = "data.frame", row.names = c("6054762", "6054763", "6054764"))

set.seed(999)
t1=testpoints(1)
t10=testpoints(10)
t100=testpoints(100)
t1k=testpoints(1e3)
t10k=testpoints(1e4)
t100k=testpoints(1e5)
t1m=testpoints(1e6)

proxistat(t1, t10k, radius=1, units='km')

proxistat(t10, t10k)

subunitscores = proxistat(frompoints=test.from, topoints=test.to,
area=rep(0.2, length(test.from[,1])), radius=1, units='km')

print(subunitscores)
subunitpop = rep(1000, length(test.from$lat))
subunits = data.frame(FIPS=substr(rownames(test.from), 1, 5),

pop=subunitpop, stringsAsFactors=FALSE)
unitscores = aggregate(subunits,
by=list(subunits$FIPS), FUN=function(x) {Hmisc::wtd.mean(x$score, wts=x$pop, na.rm=TRUE)}

)
print(unitscores)
Not run:
output = proxistat.chunked(blocks[, c('lon','lat')], topoints=rmp, fromchunksize=10000, area=blocks$area / 1e6,

http://WolframAlpha.com
http://bit.ly/1GJ9UID

proxistat.assemble.chunks 33

return.count=TRUE, return.nearest=TRUE)
output=as.data.frame(output)
if (class(blocks$fips)!='character') {blocks$fips <- lead.zeroes(blocks$fips, 15)}
blocks$FIPS.BG <- get.fips.bg(blocks$fips)
bg.proxi <- data.frame()
bg.proxi$scores <- aggregate(cbind(d=output$scores, pop=blocks$pop), by=list(blocks$FIPS.BG), function(x) Hmisc::wtd.mean(1/x[,'d'], x[,'pop']))
if ('nearestone.d' %in% colnames(output)) { bg.proxi$nearestone.d <- aggregate(output$d, by=list(blocks$FIPS.BG), min) }
if ('count.near' %in% colnames(output)) { bg.proxi$count.near <- aggregate(cbind(d=output$count.near, pop=blocks$pop), by=list(blocks$FIPS.BG), function(x) Hmisc::wtd.mean(1/x[,'d'], x[,'pop'])) }

End(Not run)

proxistat.assemble.chunks

read files storing proxistat result chunks and assemble into one result

Description

read files storing proxistat result chunks and assemble into one result

Usage

proxistat.assemble.chunks(files, folder = getwd())

Arguments

files Required character vector of names of .RData files to read and combine

folder Optional character element specifying directory where files are stored, defaults
to getwd()

Value

Matrix that contains combined results found in all the files

Examples

Not run:
fnames=proxistat.chunked(testpoints(10), testpoints(5), fromchunksize = 4, assemble=FALSE,

folder=file.path(getwd(), 'temp'))
output=proxistat.assemble.chunks(files=fnames, folder=file.path(getwd(), 'temp'))

End(Not run)

34 proxistat.chunked

proxistat.chunked Call proxistat once per chunk & save output as file (breaks large input
data into chunks)

Description

Call proxistat function in chunks, when list of frompoints is so long it taxes RAM (e.g. 11m blocks),
saving each chunk as a separate .RData file in current working directory

Usage

proxistat.chunked(
frompoints,
topoints,
fromchunksize,
tochunksize,
startchunk = 1,
FUN = proxistat,
folder = getwd(),
savechunks = FALSE,
assemble = TRUE,
saveproxistats = FALSE,
area,
file = "proxistats.RData",
...

)

Arguments

frompoints Require matrix or data.frame of lat/lon vauels that can be passed to get.distances
function (colnames ’lat’ and ’lon’)

topoints Require matrix or data.frame of lat/lon vauels that can be passed to get.distances
function (colnames ’lat’ and ’lon’)

fromchunksize Required, number specifying how many points to analyze at a time (per chunk).

tochunksize (not currently required - current default is to use all topoints at once) number
specifying how many points to analyze at a time (per chunk).

startchunk Optional integer defaults to 1. Specifies which chunk to start with, in case some
already have been done. Currently, still must pass entire dataset to this function
even if some of the earlier chunks have already been analyzed.

FUN Optional function, proxistat by default, and other values not implemented yet.

folder Optional path specifying where to save .RData file(s) – chunk-specific files
and/or assembled results file – default is getwd()

savechunks Optional logical defaults to FALSE. Specifies whether to save .RData file of
each chunk

assemble Optional logical defaults to TRUE. Specifies whether to assemble all chunks into
one variable called proxistats, which is saved as file in folder and returned by
this function.

saveproxistats Optional logical defaults to FALSE. Specifies whether to save .RData file of
assembled results as proxistats matrix. Ignored if assemble=FALSE.

proxistat.rollup 35

area Optional number or vector of numbers giving size of each spatial unit with
FIPS.pop, in square miles or square kilometers depending on the units param-
eter. Optional. Default is to pass nothing to proxistat, and default there is 0, in
which case no adjustment is made for small or even zero distance, which can
cause unrealistically large or even infinite/undefined scores. For zero distance if
area=0, Inf will be returned for the score.

file Optional name of file created if assemble=TRUE and saveproxistats=TRUE, de-
faults to proxistats.RData using save(proxistats, ’proxistats.RData’)

... Other parameters to pass to proxistat such as units or wts

Details

*** Still slow for all blocks in USA & 10k topoints (several hours) Filesizes:

80MB file/chunk if 1k blocks x 11k topoints/chunk: y=get.distances.chunked(testpoints(11e6), test-
points(11000), 1e3, units=’km’)

800MB file/chunk if 10k blocks x 11k topoints/chunk: y=get.distances.chunked(testpoints(11e6),
testpoints(11000), 1e4, units=’km’)

Value

If assemble=TRUE, returns assembled set of all chunks as matrix of 1 or more columns. If as-
semble=FALSE but savechunks=TRUE, returns vector of character elements that are filenames for
saved .RData output files in current working directory or specified folder. Each saved output is a
vector of proximity scores if FUN=proxistat, or matrix with extra columns depending on return.
parameters above. Otherwise, returns NULL.

proxistat.rollup Convert Census Block Proximity Statistics to Block Group Statistics

Description

Aggregate proximity statistics already calculated for each Census block, up to one summary for
each Census block group. The resulting proximity score, distance to nearest single point, or count
of nearby points is just the population-weighted mean of values in the blocks within a given block
group.

Usage

proxistat.rollup(output, blocksfips, blocksfipsbg, blockspop)

Arguments

output Required matrix of results from proxistat or proxistat.chunked. Must be
same number of rows and order as blocksfips. Output parameter must be output
of proxistat or proxistat.chunked and contain the colname scores, and can also
have colnames nearestone.d and/or count.near.

blocksfips Required character vector of 15-digit Census block FIPS codes (not numeric,
must have leading zeroes as needed).

36 testpoints

blocksfipsbg Required character vector of 12-digit Census block group FIPS codes (not nu-
meric, must have leading zeroes as needed). Same length and order as blocks-
fips.

blockspop Required numeric vector of population counts in Census blocks. Same length
and order as blocksfips.

Details

The population-weighted mean might not be the only statistic of interest.
To get the maximum count of sites near any single block in the block group, try aggregate(output[,
’count.near’], by=list(blocks$FIPS.BG), FUN=max).
To get the shortest distance from any block in the block group to the nearest site, try aggre-
gate(output[, ’nearestone.d’], by=list(blocks$FIPS.BG), FUN=min).
To find out how many unique sites are within X km of the internal point of any block in the block
group, for example, is harder, because it requires retaining details on which sites were near a given
block, i.e., much more data would be the input to an aggregating function.

Value

Returns a data.frame with FIPS.BG and same fields proxistat can provide (depending on what is
in the parameter called output): scores, nearestone.d, count.near, but with one row for each of the
block groups defined by FIPS.BG. Units (miles or km) are unchanged from those used to create
input parameters.

See Also

proxistat and proxistat.chunked to create proximity statistics, and see get.distances and
get.distances.all for distances between points, and get.nearest which finds the distance to
the single nearest point within a specified search radius instead of all topoints. See also rollup via
http://ejanalysis.github.io/ejanalysis/

Examples

Not run:
require(UScensus2010blocks); require(Hmisc); require(data.table); require(analyze.stuff); require(ejanalysis)
blocks=get.blocks()
bgp <- proxistat.rollup(output=output, blocksfips=blocks$fips, blocksfipsbg=blocks$FIPS.BG, blockspop=blocks$pop)

End(Not run)

testpoints Generate a number of randomly placed points, as latitude/longitude
values.

Description

Generate a number of randomly placed points, as latitude/longitude values.

http://ejanalysis.github.io/ejanalysis/

testpoints 37

Usage

testpoints(
n,
minlat = 40,
maxlat = 42,
minlon = -125,
maxlon = -70,
as.df = TRUE

)

Arguments

n Numeric value, required, TRUE by default. Specifies how many testpoints to
return. Must be an integer between zero and 50 million, and not NA.

minlat Default 40. A number that is the minimum latitude in decimal degrees to use for
generating random points within some range.

maxlat Default 42. A number that is the maximum latitude in decimal degrees to use
for generating random points within some range.

minlon Default -125. A number that is the minimum longitude in decimal degrees to
use for generating random points within some range.

maxlon Default -70. A number that is the maximum longitude in decimal degrees to use
for generating random points within some range.

as.df Logical, default is TRUE, in which case returns a data.frame, otherwise a matrix.

Details

This function returns n points at random locations using uniform distributions of latitude and lon-
gitude values, with specified ranges. Points are specified using latitude and longitude in decimal
degrees.

Value

By default, returns a data.frame (or matrix if as.df=FALSE) that has 2 columns: lat and lon, in
decimal degrees, with 1 row per point.

See Also

get.distances.all which allows you to get distances between all points, get.distances.prepaired
for finding distances when data are already formatted as pairs of points, get.nearest which finds
the distance to the single nearest point within a specified search radius instead of all topoints, and
proxistat which calculates a proximity score for each spatial unit based on distances to nearby
points.

Examples

testpoints(19,minlat=47,maxlat=48)
get.distances(testpoints(1000),testpoints[10],radius=999,return.rownums=TRUE,return.latlons=TRUE)

Index

∗Topic datasets
bg.pts, 4
countiesall, 6
lookup.states, 25

bg.pts, 4

compile.dbfs, 5
convert, 3, 5, 10–12
counties (countiesall), 6
countiesall, 6
countypointmap, 7, 29
cut, 7

deg2rad, 8
deltalon.per.km, 3, 8, 28

gcd, 9, 10–12
gcd.hf, 10
gcd.slc, 11
get.bg.latlons, 12
get.county.info, 7
get.distances, 3, 6, 9–12, 13, 17, 19, 21–23,

27, 28, 30–32, 36
get.distances.all, 10–12, 14, 16, 21–23,

27, 28, 32, 36, 37
get.distances.chunked, 19
get.distances.prepaired, 14, 17, 20, 22,

23, 37
get.nearest, 3, 14, 17, 21, 21, 23, 24, 32, 36,

37
get.state.info, 25, 26

harmean, 31

latlon.colnames.check, 23
lines, 24
linesegments, 24
lookup.states, 25
lookup.states, (lookup.states), 25

meters.per.degree.lat, 3, 26, 28
meters.per.degree.lon, 3, 9, 27, 27
min, 10, 11

par, 29
pmin, 10, 11
pointmap, 7, 8, 28
proxistat, 3, 14, 17, 21–23, 29, 34–37
proxistat-package, 2
proxistat.assemble.chunks, 33
proxistat.chunked, 34, 35, 36
proxistat.rollup, 35

read.dbf, 5, 28
rollup, 36

SpatialPoints, 14, 16, 20, 22, 31
spDists, 14, 16, 20, 22, 31
state.abb, 26
states (lookup.states), 25

testpoints, 24, 36

38

	proxistat-package
	bg.pts
	compile.dbfs
	convert
	countiesall
	countypointmap
	deg2rad
	deltalon.per.km
	gcd
	gcd.hf
	gcd.slc
	get.bg.latlons
	get.distances
	get.distances.all
	get.distances.chunked
	get.distances.prepaired
	get.nearest
	latlon.colnames.check
	linesegments
	lookup.states
	meters.per.degree.lat
	meters.per.degree.lon
	pointmap
	proxistat
	proxistat.assemble.chunks
	proxistat.chunked
	proxistat.rollup
	testpoints
	Index

